

Shock propagation through multiphase media

R.J.R. Williams and D.L. Youngs AWE plc, Aldermaston, UK

> IWPCTM9 Cambridge, July 2004

> > 1

Outline

- Multiphase flows
- Previous studies
- Present work
 - 2D AMR simulations
 - 3D simulations
 - 1D characteristics
- Experimental comparisons

Astrophysical multiphase flows

Starburst galaxy M82

Astrophysical multiphase flows

Eagle nebula columns

Astrophysical multiphase flows

Photoionized clumps in the Helix nebula

Experimental multiphase flows

Reshock of Richtmyer-Meshkov fingers, e.g. in cylinder mix experiments.

Some previous numerical studies

Isolated clumps
2D Picone & Boris '88; Cowperthwaite '89; Klein et al '94

3D Stone & Norman '92; Robey et al '02

- MHD: Mac Low et al '94
- Small clusters: Jun et al '96; Steffen et al '97; Hazak et al '98; Poludnenko, Frank & Blackman '02; Collins et al '03
- Continuum approximations:

Mass loading Hartquist et al '86

Phase drag Youngs; Williams & Dyson '02

Experimental comparisons

- Shock tube experiments
 - Ranger & Nicholls '69
 - Haas & Sturtevant '87
 - Philpott et al '92
- Laser driven experiments on loaded foam
 - With single sphere (Klein et al '00; Robey et al '02)
 - With plastic threads (Frank et al)
 - With dense particles (Foster et al)

Global dynamics

2D AMR simulations

Using Aqualung (Williams '99)

- 150 clumps with density 100× ambient, $\gamma = 5/3$
- \bullet effective resolution up to 1024×4096
 - 60 cells across each clump diameter.
- a = 1 in upstream diffuse gas, Mach 10 or 2 incident shock.

2D AMR simulations – Mach 10

2D AMR simulations – Mach 2

Structure of leading shock in 2D

Velocity vector and density for $\overset{3.2}{2}$ D flow, Mach $\overset{3.4}{1}$ O shock. Velocity field highly turbulent, flow nozzles between clumps, compaction at various angles.

Using Turmoil3D (Youngs): mass fraction (upper), density (lower):-

Clump gas is well mixed at this level, surfaces are strongly structured.

3D simulations – II

Column density in 3D simulation – leading shock is closer to plane, initial cloud crushing is more directed.

1D characteristics – Mach 10, 2D

Velocity: clump and diffuse gas, t = 0.1, ..., 0.5:-

- Leading diffuse shock weaker, broadened (but still supersonic)
- Clumps catch up. Peaks in early scatter are gaps in clump distribution.

1D characteristics – Mach 2, 2D

- Leading shock spreads fully
- Precursor wave escapes

1D characteristics – Mach 10, 2D

Significant density structure remains well after shock passage.

1D characteristics – Mach 10, 3D

- Leading shock in diffuse gas weaker, still sharp
- Clumps catch up in similar distance, with less scatter

Multiphase flow model

Compare particulate model (adapted from Youngs 1994), with

- Drag
- Added mass terms
- Inter-phase pressure relaxation
- Particle break up

 heat exchange, surface tension/strength and viscosity effects are neglected here.

Break up speed from ram pressure balance not sound speed (cf. Poludnenko et al)

Parameters defined using numerical and experimental results.

Gives $v_{\text{rel}} \propto (1 - t/t_{\text{shred}})^{\alpha}$; t_{shred} and α combine break-up and drag.

Compare centre of mass motion for single shocked clump. Mach 10 Mach 2

Multiphase flow model results

Velocities of clump and diffuse gas.

Initial particle size reduced to allow for initial anisotropic contraction. Diffuse overshoot similar to Mach 10 3D results.

- Multiphase structure is common in astrophysics
- \bullet Broadens impinging shocks, drives diffuse flows to \sim Mach 1
- Turbulence driven by shock-surface interactions and shock collisions
- Partial mixing occurs, but significant structure remains
- ...so may retain structure with detailed physics (e.g. cooling)
- Experimental comparisons are being developed.