A NIF 3-D high Mach number feature experiment

Presented to: 9th IWPCTM Cambridge, UK

Stephen Weber, Brent Blue, S. Gail Glendinning, Harry Robey, Pete Stry and D. Tod Woods

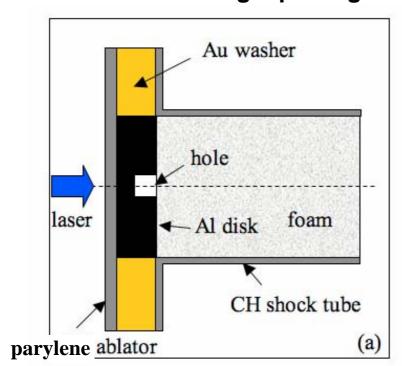
Lawrence Livermore National Laboratory

July 19-23, 2004

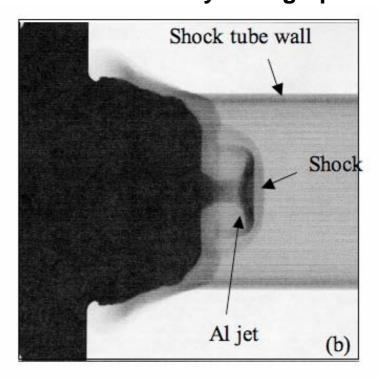
This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

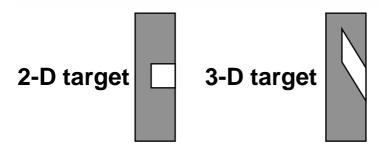
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808

The jet experiment demonstrated NIF capabilities and validated 3-D modeling of shock effects

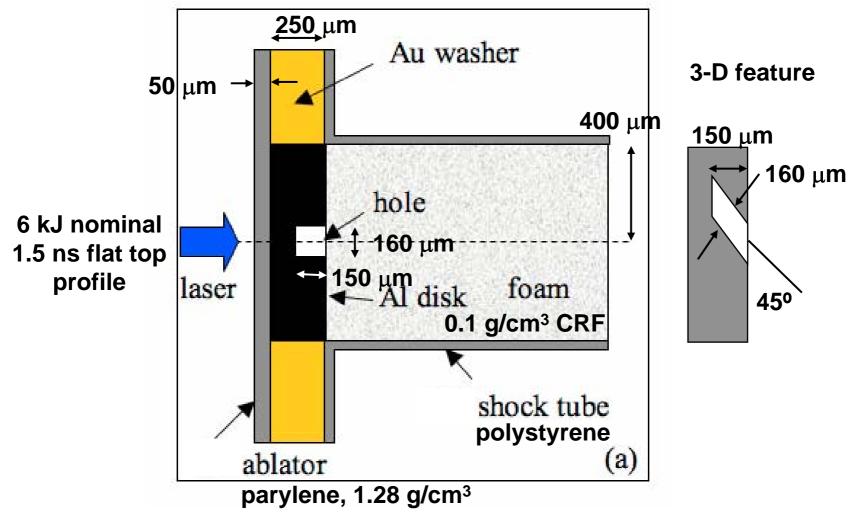


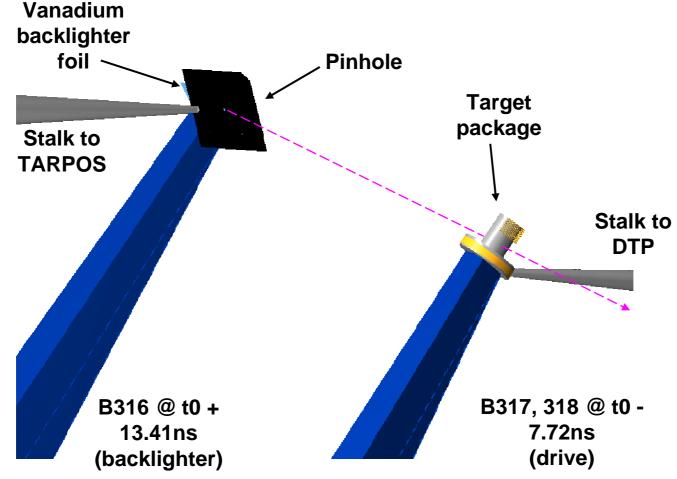
- Shock passage over a cylindrical void in an Al disk generated a jet into CRF foam
 - First hydrodynamics experiment driven by NIF, still in early stages of construction
 - 5.8 kJ direct drive from two beams in one quad; approximately uniform supergaussian spot from improved phase plates
 - Target 1: axisymmetric (2-D), cylinder axis normal to the disk surface
 - Target 2: explicitly 3-D, cylinder axis tilted 45° to disk surface
- Relevant to ICF and astrophysics
 - ICF shell features such as waist joints, fill tubes can result in jets of shell material into DT fuel
 - Astrophysical jets
- Similar experiments have been done on other facilities by several labs
 - Nova, Omega, Z; AWE, LLE, LANL, SNL
- Good images were obtained at two times from 2-D targets and two orthogonal views for 3-D targets; <u>reproducibility demonstrated</u>
- 2-D and 3-D HYDRA simulations are in good quantitative and qualitative agreement with data, with a few apparent discrepancies


A shock is driven through an Al disk with an embedded defect, resulting in a jet of Al into CRF foam

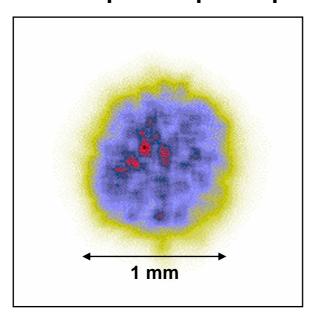


Shock-tube target package

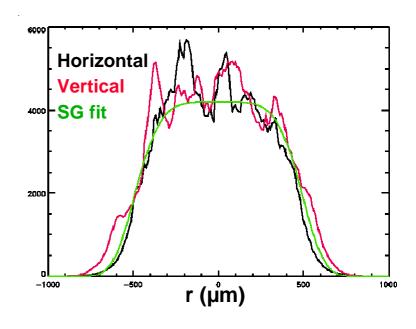

Simulated x-ray radiograph


Target dimensions

From the one available NIF quad, two beams drove the target and one the backlighter

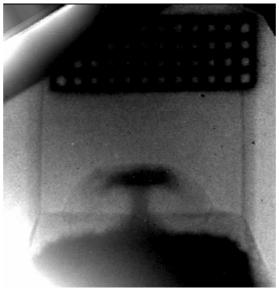

• Backlighter delay (15 or 21.6 ns from start of drive to middle of backlighter pulse) was limited by laser constraints (on one quad)

Cambridge, UK Edited by S.B. Dalziel

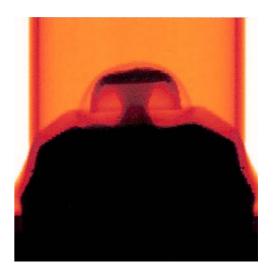

The full aperture phase plates provided a flat, approximately uniform spot profile

Measured single beam intensity profile 1 mm full aperture phase plate

lineouts


Late time data from axisymmetric targets was reproducible and matches simulations

040525-001



040526-002

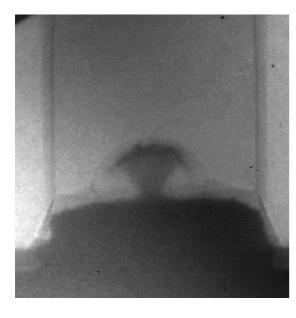
21.8 ns

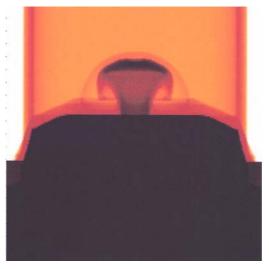
Simulated image 3-D, 21.6 ns

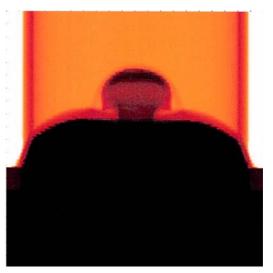
21.9 ns

• Simulations predict too much lag in the foam shock near the tube walls

An early time image of a symmetric target also matches simulations

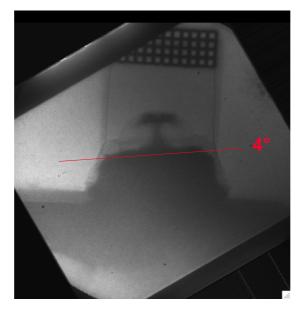


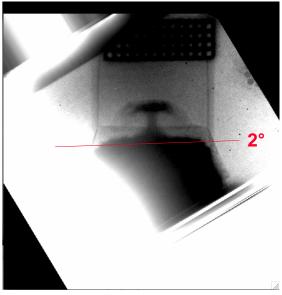

040527-001


16 ns

simulated image (2-D), 15 ns

simulated image (3-D), 15 ns


In all 2D jet images, the interface is tilted 2-4°


040527-001

3°

040525-001

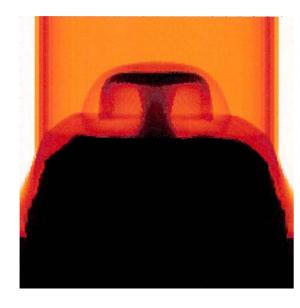
040526-002

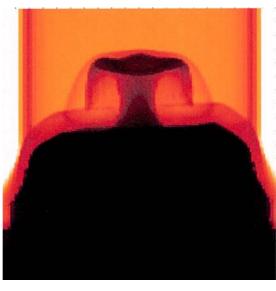
15 ns

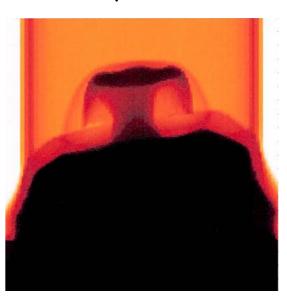
21.6 ns

21.6 ns

Simulations of effects of beam offset indicate that ~100 µm offset would give the observed tilt




simulated images at 22 ns with offset beams

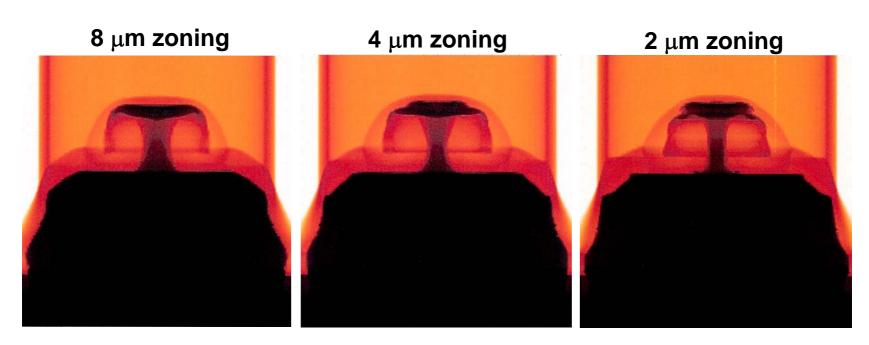

50 μm offset

100 μm offset

200 μm offset

1.7° tilt

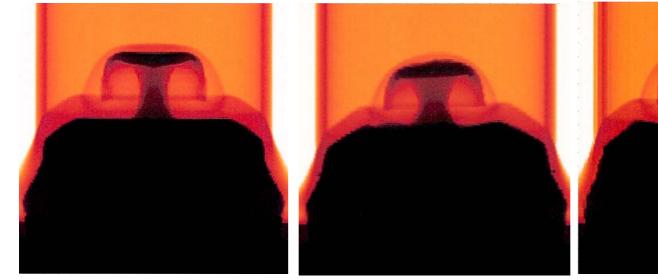
3.9° tilt

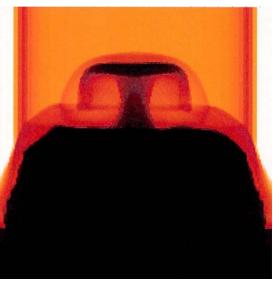

9.8° tilt

• Central bump for 100,200 μm appears to have been caused by an erroneous ALE control

In 2-D, more structure is predicted for the head of the jet as resolution is increased

Simulated backlit images at 22 ns, 2-D

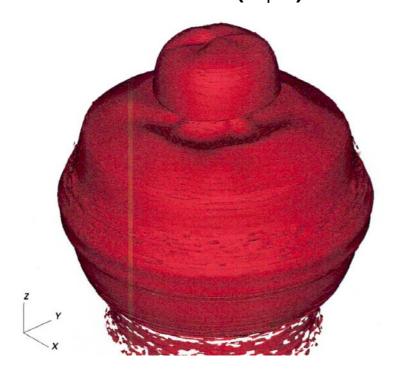

- Most of our 2-D simulations employ 4 μ m zoning; 3-D 8 μ m (one 4 μ m run)
- Jet shows more structure but not substantial changes with increasing resolution
 - Courser resolution actually may fit the jet head structure better
- The width of the stem appears to decrease with finer resolution

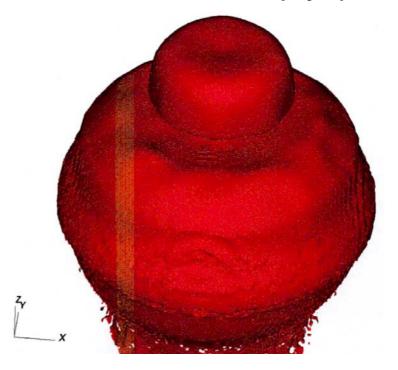

2-D, 3-D polar, and 3-D Cartesian zoning give small differences in jet structure

Simulated backlit images at 21.6 ns

3-D polar mesh 3-D Cartesian 2-D (8 μ m resolution) measured 2-D laser spot (50 μ m offset spot)

 Both 3-D simulations use the measured single beam laser spot profile, which breaks axial symmetry

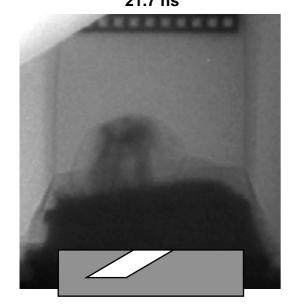

Cartesian and polar meshes both introduce artifacts, but of different types



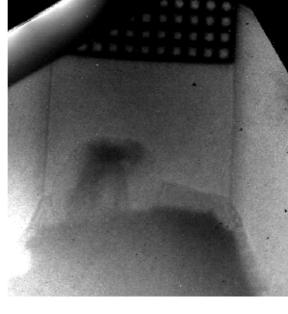
Al region boundary, axisymmetric target, 21.6 ns

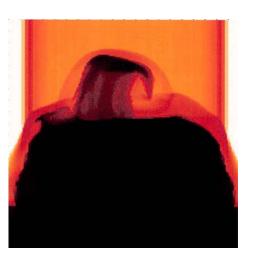
Polar mesh (r-φ-z)

Cartesian mesh (x-y-z)



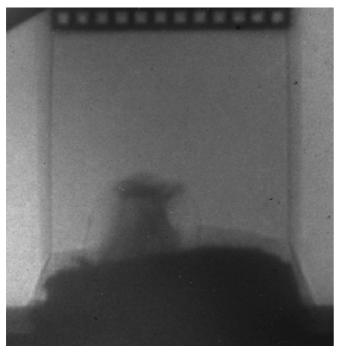
- The Cartesian mesh gives a jet which is slightly broader along the mesh directions
- The polar mesh has trouble accommodating flow through the axis


Late time structure of 3-D targets is reproducible; some differences from simulations

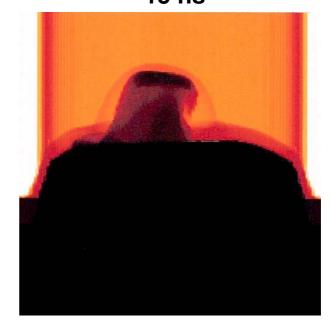

040526-001 21.7 ns

040528-003 22.2 ns

Simulated image 21.6 ns



View looking normal to plane of hole tilt

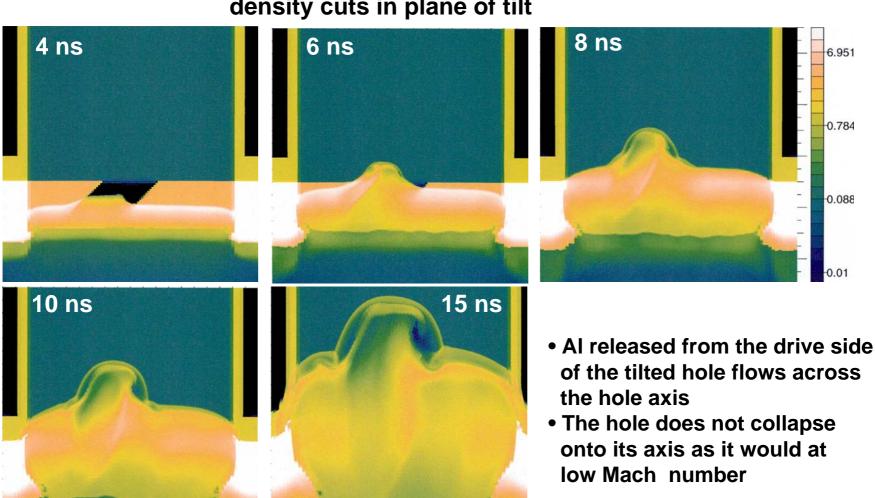

Early time data has also been obtained for the 3-D target

040527 15.7 ns

Simulated image 15 ns

View looking normal to plane of hole tilt

The 3-D jet is tilted to the opposite side of normal from the hole

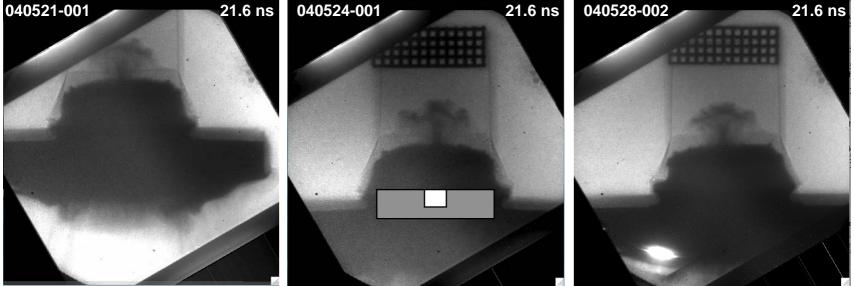

6.951

-0.784

0.088

0.01

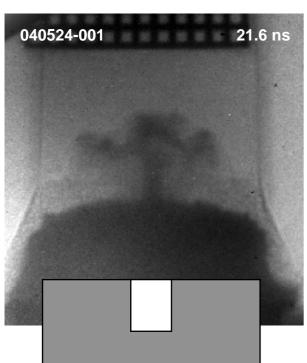
density cuts in plane of tilt

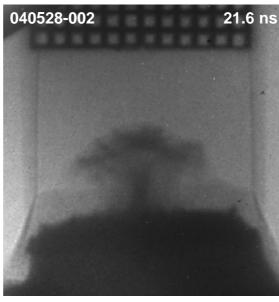


IWPCTM04.16

Cambridge, UK Edited by S.B. Dalziel

Some variation was seen among images of the 3-D target viewed in the tilt plane





View looking along plane of hole tilt No early time data was taken for this view

The details of the jet structure of the 3-D target viewed in the tilt plane differ from simulations

Simulated image 21.6 ns 8 µm resolution



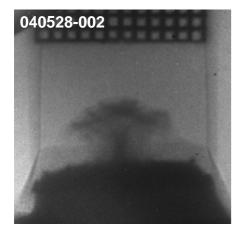
View looking along plane of hole tilt

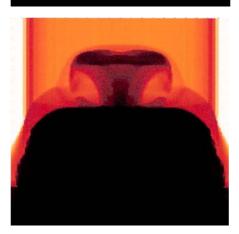
Simulated images show qualitative changes between 8 µm and 4 µm zoning

040526-001



Simulated images, 21.6 ns


8 μm zoning



4 μm zoning

view ⊥ to tilt

view || to tilt

Most dimensions of the axisymmetric jets are matched well by simulations

time	feature	Data 1	Data 2	simulation	Difference (sim-data avg)
15 ns	pedestal	274 μ m		286 μm	14 μ m
	Foam shock	316 μm		327 μm	11 μ m
	Jet head	490 μm		481 μm	-9 μm
	Foam head	514 μm		501 μm	-13 μm
	Head width	298 μm		240 μm	-58 μm
	Bow width	454 μ m		353 μm	-101 μm
21 ns	pedestal	442 μ m	420 μm	456 μm	25 μ m
	Foam shock	541 μm	490 μm	530 μm	15 μ m
	Jet head	694 μ m	670 μm	688 μm	6 μ m
	Foam head		680 μ m	724 μm	44 μ m
	Head width	255 μm	275 μ m	328 μm	63 μ m
	Bow width	571 μm	570 μm	462 μ m	-108 μm

- It is not clear where the experimental head width was measured
- Simulations use the nominal 6 kJ, while shots average ~5800 J

Dimensions of the 3-D jets are also fit well by the simulations

time	feature	Data 1	Data 2	Data 3	simulation	Difference (sim-data avg)
15 ns	pedestal	255 μm			283 μm	28 μ m
asymm	Foam shock	320 μm			340 μm	20 μm
	Jet head	510 μm			513 μm	3 μm
	Head width	250 μm			216 μm	-34 μm
	Bow width	379 μm			403 μm	24 μm
21 ns	pedestal	417 μm	432 μm		467 μm	43 μm
asymm	Foam shock	495 μm	545 μm		568 μm	48 μm
	Jet head	703 μm	746 μm		739 μm	15 μm
	Head width	236 μm	274 μ m		279 μm	24 μm
	Bow width	492 μm	442 μ m		498 μm	31 μm
21 ns	pedestal	435 μm	464 μ m	432 μm	471 μm	28 μm
symm	Foam shock	500 μm	550 μm	520 μm	561 μm	38 μm
	Jet head	738 μm	722 μm	742 μm	737 μm	3 μm
	Head width	416 μm	482 μ m	440 μm	440 μm	-6 μm
	Bow width	584 μ m		592 μ m	585 μm	-3 μm

The jet experiment demonstrated NIF capabilities and validated 3-D modeling of shock effects

- Shock passage over a cylindrical void in an Al disk generated a jet into CRF foam
 - First hydrodynamics experiment driven by NIF, still in early stages of construction
 - 5.8 kJ direct drive from two beams in one quad; approximately uniform supergaussian spot from improved phase plates
 - Target 1: axisymmetric (2-D), cylinder axis normal to the disk surface
 - Target 2: explicitly 3-D, cylinder axis tilted 45° to disk surface
- Relevant to ICF and astrophysics
 - ICF shell features such as waist joints, fill tubes can result in jets of shell material into DT fuel
 - Astrophysical jets
- Similar experiments have been done on other facilities by several labs
 - Nova, Omega, Z; AWE, LLE, LANL, SNL
- Good images were obtained at two times from 2-D targets and two orthogonal views for 3-D targets; <u>reproducibility demonstrated</u>
- 2-D and 3-D HYDRA simulations are in good quantitative and qualitative agreement with data, with a few apparent discrepancies