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1. Introduction 

The Richtmyer-Meshkov instability (IRM) is involved in several physical phenomena such as, for example, 
inertial confinement fusion (ICF) or supernovas. This instability occurs at the interface between two materials at 
the passage of a shock wave. Any perturbation of this interface first grows linearly, then nonlinearly; at late time, 
complex structures appear at the interface which then reaches a pre-turbulent regime. These perturbations can 
break the symmetry of the implosion in an ICF capsule and decrease its fusion yield. 
The nonlinear regime of the IRM, in the planar geometry, has been studied by numerous authors who derived al-
gebraic solutions1,2,3 . They have a limited range of validity due to a secular behaviour which leads to a diver-
gence of the series in time. As a result, only the weakly nonlinear stage of the IRM can be studied by these 
methods. 
  This paper is an attempt to solve this problem by describing the nonlinear growth of the IRM with ordi-
nary differential equations. First, the equations which describe the dynamics of a planar single-mode interface 
are simplified by using a change of variable. Then, some hypotheses are made in order to find a non-divergent 
solution. 

The paper is organized as follows. In Sec. 2, we detail the derivation of a new nonlinear theory. In Sec. 3, 
some comparisons between this model, experiments, simulations and others theories are presented. In Sec. 4, we 
discuss the results and the range of validity of our model. 
 
 
2. Theoretical derivation 

We consider a single-mode sinusoidal perturbation, described by ( )txz ,η=  between two gases (see 
Fig.1). The fluids are considered inviscid and incompressible. The flow is 
supposed irrotational and the velocity in each fluid derives from a potential. 
The Atwood number is defined as ( ) ( )ρρρρ +−= '/'At . The equations that 
have to be solved are the Laplacian equation for the potentials, the motion 
equation of the interface in each fluid (Eq.1), and the Bernoulli’s equation 
at the interface (Eq.2).  
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In order to simplify these equations, we use the following change of variable (Eq.3) :  
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Fig.1 : Sketch of the configuration 

at 
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This leads to a new set of equations (Eqs. 4-5), for the Laplacian, motion and Bernoulli’s equations, respectively: 
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In a previous model1, which used perturbations methods, the interface and the velocity potentials could be writ-
ten as: 

 
 
 
 

(7) 
 
 
 
 

In these equations, 0a , k , σ0a , are the post-shocked amplitude of the perturbation, its wave number, and the 
initial growth rate of the instability, respectively. A non-dimensional time can be defined by tka στ 0= . Pertur-
bation methods lead to divergent results for 1≈τ , as shown on Fig. 2.  

 
In order to build a new approach, we use the following ex-

pression for the interface: ( ) ( )�
∞

=
=

1

cos,
i

i kxtAtxη , where 

the )(tAi are supposed to be continuous monotonic functions 
of time. For the classical perturbation method, the main hy-
pothesis was: ...321 >>>>>> AAA With the new model, 
this hypothesis evolves with τ : as τ grows, the )(tAi  are no 
more negligible and become of the same order. Let us re-
mark that the perturbation method is exact for 1<τ ; so, 
classical and new approaches must match asymptotically for 

1=τ . 
 
 

In order to solve Eqs. 4-6, several hypotheses are made: 
- the potential velocities are written as in Eqs. 8 
- the dynamics of the interface is controlled by the iiB , (see Eqs. 8). This leads to Eqs.9 for the motion equation, 

and to a set of ordinary differential of equations for the iiB , for the Bernoulli’s equation 

- the jiB , are computed in order to cancel the divergent terms which are created by the iiB ,  

 

Fig. 2: Growth of the first three modes obtained with 
 perturbation methods. Full and dashed line are from 
11th and 13th order results, respectively. 
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As divergent terms, or terms leading to unphysical behaviour of the solutions are cancelled out by the jiB , , the 

following systems are obtained (Eqs. 10-12):  
- with one mode : 

(10) 

       . 
 

- with two modes : 
 

 
 

(11) 

                  . 
        . 
 
- with three modes : 

 
 
 
 
 
 
 
 
 
 

(12) 
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These equations lead to saturated growths of each harmonics, as shown on Figs.3-5 for At=1. 
 

   
Fig. 3: Growth of harmonics from 
Eq.10. Asymptotic matching with per-
turbation theory is done for 1≈τ . 
At=1. 

Fig. 4: The same as in Fig.3, but for 
Eq.11. 

Fig. 5: The same as in Fig.3, but for 
Eq.12. 

 
The solutions of Eqs. 10-12 are obtained numerically with symbolic computation software. However, such re-
sults are not exact solutions of Eqs. 4-6: once put back in this system, some small residues remain. So, Eq. 12 
gives only a “pseudo-solution” that we believe is a good approximation of the exact solution. In order to prove 
this assumption, a linearization near this pseudo-solution must be derived, and the correction must be proven 
small. Such a mathematical proof is in progress. On the other hand, comparisons with experiments or simula-
tions can be done in order to study the validity of the pseudo-solution. 
 
3. Validation of the model and quantitative results 

Simulations of a shock tube experiment4 have been carried out by the CEA hydro-code TRICLADE5. The 
post-shocked Atwood number is 0.635. Gases are a mix of air and acetone, and SF6. The Mach number of the in-
cident shock wave is 1.3. The initial perturbation is a single-mode sinusoidal. The growth of  the first three har-
monics is presented in Fig.6, for numerical and theoretical results. In this figure, initial conditions of the nonlin-
ear model are computed by matching with small perturbation method1; furthermore, a compressible linear6 
growth rate has been used for small τ. In Fig. 7, the initial conditions of the model are obtained by fitting with 
the numerical results. 
 

  
Fig. 6: Growth of the first three harmonics for the shock 
tube experiment4. Curves with symbols and full ones are 
from simulation and model, respectively. 

Fig. 7: The same as in Fig. 6, but the initial conditions of 
the nonlinear model are obtained by fitting with simulation. 

 
For the first two harmonics, the agreement between simulation and theory is good; it is even better as 

the fitting with simulation is used. The model over-estimates the simulation for the third mode, but the latter has 
an odd behaviour in the simulation.  

The physical parameters of this simulation were taken from a shock tube experiment4. Experimental 
data about the half peak-to-valley amplitude can be compared with the nonlinear model (see Fig. 8). The 1-mode 
model gives a good approximation of the experimental data, but the 3-mode model is in an even better agree-
ment. This remains true for times as long as 10≈τ . 

The previous comparisons were for high Atwood number. For low Atwood number, At = 0.2, a simula-
tion has been carried out and harmonics growths have been compared with theory. This comparison is presented 
in Fig. 9. As before, the agreement is quite good and the negative value of the third harmonics is correctly pre-
dicted.  

1rst harmonics 

2nd harmonics 

3rd harmonics 

1rst harmonics 

2nd harmonics 

3rd harmonics 
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Some models7,8,9 give the evolution of the bubble velocity as a function of time. We present in Fig. 10, compari-
sons between the results of these models and the one obtained with the 3-mode nonlinear model. Once again, the 
agreement between the different theories is very good. It has been checked that this good agreement is also true 
for high Atwood numbers. 
 

 
 
For the spike velocity, a comparison with Sadot 

et al. model10 has been done for At = 0.77. The results 
are presented in Fig. 11. Some discrepancies can be ob-
served between the two  models. 

 
As the 3-mode model give the growth of the 

first three harmonics, a shape of the interface can be 
built, even if it will remain single-evaluated. For the case 
At = 0.635, we have compared the shape of the interface 
obtained either from simulation or from the model. 
These comparisons are presented in Fig. 12, for the non-
dimensional time τ  = 0.8, 1.2, 1.8, 3.0. 
 
 

 
 
 

 
 

Fig. 8: Half peak-to-valley amplitude for experimental data4 
(symbols), 1-mode model (dashed line) and 3-mode model 
(full line). 

Fig. 9: The same as in Fig. 7 but for At=0.2. 

 
Fig. 10: Bubble velocity. Black curves are from Sohn7, Mikaelian8 and Goncharov9’s model, from left to right. Blue curve is from 
the 3-mode nonlinear model with initial conditions by matching small perturbation method1. At=0.2. 

 
Fig. 11: Spike velocity. . Black curve is  from Sadot et al. 
model10. Blue curve is from the 3-mode nonlinear model 
with initial conditions by matching small perturbation 
method1. At=0.77. 

Experiment 

Models 
1rst harmonics 

2nd harmonics 

3rd harmonics 
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As it can be seen, the shape of the bubble is very well estimated, even when the mushroom structure ap-

pears. On the other hand, the height of the spike is over-estimated in comparison with the simulation. 
 

4. Concluding remarks and discussion 
A new nonlinear model has been derived; it gives the growth of a single-mode perturbation for the IRM. 

The results are obtained by solving a set of coupled ordinary differential equations. Even if a complete mathe-
matical demonstration is still in progress, the pseudo-solution which is obtained seems to be a good approxima-
tion of the exact solution. Indeed, several comparisons with both experimental, theoretical and numerical results 
show good agreements for a wide range of Atwood number. This remains true from linear to nonlinear regime. 
Even if this nonlinear model cannot describe mushroom structures at the interface, this seems to have little effect 
on the peak-to-valley amplitude of the perturbation. However, at late time, the saturation of each harmonics 
seems under-estimated when compared with simulations. This underlines the need for a different mathematical 
formalism which could be able to describe mushroom structures. 

But the simple formula: ( ) ( ) ( )tAkktA 2
1

2
11 4/110B +=

•
, seems to give a simple means to roughly estimate the 

growth of a perturbation in the case of the Richtmyer-Meshkov instability. The 3-mode model, with the right ini-
tial conditions, seems to give even better results. 
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Fig. 12: Shape of the interface. Comparison between model (blak line) and simulation (colored areas).  τ =0.8, 1.2, 1.8, 3.0. 
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