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3D code TREK is used to study turbulence growth in the gravitational field at a plane 

interface of two incompressible fluids of density difference n=3 with initial velocity shift at the 

interface. The case is addressed where the acceleration sign corresponds to stable stratification. 

The computed data is compared to computations by a phenomenological model.  

This paper addresses the problem of turbulent mixing at a plane interface of two 

incompressible fluids under action of velocity shear and acceleration creating a stable situation. 

This kind of flow occurs, for example, in the upper or lower part of the initial portion of plane or 

round jets of a density other than the surrounding jet density. 

Previously we studied simplest flows with gravitational [1] or shear [2] instabilities. The 

flow under study here represents a more complex case and is both of independent interest since 

such flows are abundant in the nature and of interest as a test for semiempirical turbulence 

models. 

The above problem was studied previously in refs. [3,4] using Nikiforov’s turbulence 

model and the k ε−  model. The results reduced only to the time dependency of the turbulent 

mixing zone (TMZ). 

This paper studies the problem of interest with the DNS method of direct numerical 

simulations using 3D gas-dynamic code TREK [5]. Both the computational grid and the 

numerical method are varied: in one approach the materials were considered as different, that is, 

of different concentrations; in the other as a single material, without singling-out with volume 

concentrations. 

Besides, we also study this problem numerically using the phenomenological k ε−  

turbulence model [6]. The time dependence not only of the TMZ width, but also of maximum 

turbulent energy in the TMZ has been considered. 

Numerical arrays of hydrodynamic quantities from 3D computations are used for 

determination of moments of the quantities (Reynolds tensor diagonal components, turbulent 

flows, profiles of density and its mean-square fluctuation) as well as construction of the one-

point concentration probability distribution density function (PDF) and spectral analysis of the 

velocity and density fluctuations.  

Some results of the 3D computations are compared to measurements [7-9] and the data of 

semiempirical theory of turbulence [10] that accounts for the Reynolds tensor anisotropy.  

 1

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



1. Setting up the TREK computations 
The problem is formulated (similar to [1,2]) as follows. At the initial time two half-spaces 

separated by plane z= =0 are filled with ideal gases at rest of densities cz 1ρ =1 and 2ρ =n (n=3, 

Atwood number 2

2 1

A 1ρ ρ
ρ ρ

−
≡

+
). The initial geometry is presented in Fig. 1. The velocity is 

 in the upper half-plane and 1 ( 0) 0.y yu u z≡ > = − 5 52 ( 0) 0.y yu u z≡ < = – in the lower.Gravity 

 is directed from the light material to the heavy. Its value was varied from  to zg 0.2zg = 1zg = . 

At the initial time, random density perturbations    δρ= ± 1ρ ⋅δ,     where δ= 0.1, are given using 

the random-number generator at the interface (in a layer one cell thick). Gas-dynamics equations 

for ideal two-material medium (with zero molecular viscosity and heat conduction) are solved. 

The computational domain is a parallelepiped, with its vertical side of the side face being =1. 

Its horizontal face is a square with side  =

zL

xL yL  =1. 

 
Fig. 1. Geometry of the problem 

 

The initial pressure profile was given reasoning from the hydrostatic equilibrium 

condition: 

2

0( ) ( )
z

z

p z p z g dρ= − ⋅ ⋅∫ z .  

Here the coordinate of the upper face is 2z = 0.5, that of the lower face 1z = -0.5, 0p =15.4. 

Note that the pressure (p ≈ p0) is such, that the following non-compressibility condition was met 

well for the turbulent flow  k=ξLtg<<γp/ρ, where ξ=const<<1, <Λ,   is the turbulent mixing 

zone (TMZ) width, k is the turbulent energy. 

tL tL
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The equation of state is ideal gas with adiabatic constant γ=1.4.  

The computational grid is uniform with = =  cells. The number of the cells was 

varied from =100 to =200. The cell size is = = = 1/ . With the above 

computational grid options the problem was calculated with two concentrations, that is the two 

gases of different density were considered as different materials. 

xN yN zN

xN xN xh yh zh xN

On the computational grid with =100 the problem was also calculated with a single 

concentration, that is, the two gases of different density were considered as one and the same 

material.  

xN

The “rigid wall” condition was posed on the horizontal boundaries of the computational 

domain and the periodicity condition on the vertical. 

2. Results of 3D computations 
2.1 2D sections 
The general idea of the flow evolution in this problem is provided by the raster patterns 

of the heavy material concentration from the 3D computation on coarser  ( =100) and finer 

( =200) grids, see Figs. 2 through 8 depicting the longitudinal 2D sections (along the flow) of 

the computational domain. 

xN

xN

At the first stage of the problem, shear instability is dominating and the vortex 

enlargement with time is observed. A feature of the flow is the curling of the vortices drawing 

their circulation from the averaged flow with velocity shear. On a fine enough grid there should 

be tapering-off to the relevant self-similar regime at the end of the stage. 

At the second stage, a stable stratification of the problem begins to show up that inhibits 

the perturbation growth due to shear instability and the vortex stabilization is observed. Time 

scale  characteristic of this stage as well as space scale  can be introduced that are 

determined by velocity shear 

0t 0L

1y y yu u u∆ ≡ − 2

zg

g

L

 and gravity : zg

0 /yt u= ∆ ,           

2
0 ( ) /y zL u= ∆ . 

Thus, till width  of the TMZ is small in comparison with , the gravity can be 

neglected. If the computational domain size  is also small in comparison with , we obtain 

the problem of pure shear mixing. Otherwise ( ), too few cells fall on the TMZ. In our 

computations , hence, the  optimal for that problem was selected by variation of the 

. 

tL 0L

zL 0L

0zL >>

1yu∆ = 0L

zg
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In the above computations 0.2zg = , therefore the plots presented cover both the stages. 

The raster patterns of the velocity components in the 3D computation with single material 

on grid =100 are shown in Fig. 9 for time τ=2, when the gravity effect is significant. xN

2.2 Mixing zone  
At the first (unstable) stage of the problem, there should be the tapering-off to the self-

similar regime. It is characterized with a linear time dependence of the TMZ width: 
(0)

tL L uα= + ⋅ ∆ ⋅y t .         

Here ≡tL 2z  - 1z , is the TMZ width in z direction that is determined  from points 1z , 2z , at 

which small enough value ε of an averaged hydrodynamic quantity, for example, heavy material 

concentration c or velocity , is reached. In the first case we assume in what follows that yu

 (2c 1z )=ε, (2c 2z )=1-ε,         

where  is the mass fraction of the material of initial density 2c 2ρ =n; denote the resultant  by tL

( )c
tL . In the second case we assume in what follows that 

22 ( )y yu z u− ∆ =ε, 12 ( )yu z uy+ ∆ =ε ;        

denote the TMZ width by ( )u
tL . 

Evidently, in view of the previous section, the scaled TMZ width is: 

(0)

0

t
t

Ll l
L

α τ≡ = + ⋅ ,  where: 0/t tτ ≡ . (1) 

Thus, self-similar dependence (1) with small enough  must be of a universal form at 

the next stage as well and independent of 

(0)l

,yu gz∆ . Precisely this can be seen in Fig. 10 plotting 

( )tl τ . 

Note that in the 3D computation variant for =100 with two materials when xN 2.5τ >  the 

influence of the computational domain boundaries begins to show up (see also below). 

That same figure plots the straight lines, whose slopes correspond to the maximum and 

minimum rates of the TMZ width growth at the self-similar stage of the shear flow among their 

most probable values measured in refs. [7,8] as well as in different experiments presented in ref. 

[9].  

It is seen that at the initial stage of the 3D computations with two materials ( 1τ < ) there 

is the tapering-off of the ( )tl τ  to linear dependencies characterized with slopes close to the 

experimental ones, with . At a later stage (( ) ( )u
t tl l≈ c 1τ > ) the slope of the curves ( )tl τ  begins to 

decrease and the  becomes noticeably larger than . The variants on different grids are ( )u
tl

( )c
tl
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close to each other on the whole, the difference is mainly in a minor delay (shift in time) in the 

computation on a coarser grid. 

In the 3D computation with a single material the delay (shift in time) is even more 

noticeable, moreover, at a late stage the  and  are close on the whole as before. ( )u
tl

( )c
tl

Note that when t>2.5-3 the influence of the computational domain boundary on the side 

of the light material begins to show up. 

2.3 Time change of fluctuation characteristics 
For the first stage of this problem the self-similar regime also manifests itself in the 

tapering-off to the steady value of   

( ) max( )mk t k≡ ,       

maximum turbulent energy over the TMZ width, where:  

( ) iik z k= ,        

 ( )
2

i k i k
ik

u u u uk z < > − < >< >
=  ;     

the averaging (denoted by <>) is performed over the whole horizontal section z=const.  

As seen from Fig. 11, (t) from the computation on a fine grid bymk 0.5τ ≈  is close to the 

values measured in experiments [7,8]. When 1τ > , it decreases. In a computation on a coarser 

grid, the behavior of  is much alike on the whole, the difference is mainly a slight delay 

(time shift).The same is observed in the 3D computation with single material, here the delay 

(time shift) is even larger. 

( )mk t

Fig. 12 plots the time curve of the velocity fluctuation anisotropy taken in the middle of 

TMZ 

( ) /ij ii jjE t k k≡ ,      (2) 

where diagonal components  (here there is no summation over i) of tensor  (in (2) there is 

no summation over subscripts i, j) appear that are maximum over the TMZ width. As seen from 

Fig. 12, Reynolds tensor anisotropy takes place in the 3D computations, with the “longitudinal” 

component  of the diagonal part of tensor k

iik ikk

yyk ij in the mixing zone being larger than the 

“transversal” ones in the two-material computations.  

According to the turbulence model [10] that includes the Reynolds tensor anisotropy, the 

following relations are valid for the initial stage:                                       

1/ 3
1/ 3 2

zz
zy

yy

k bE
k b

−
≡ =

+
   ,                                     (3)  
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1xx
xz

zz

kE
k

≡ =   .                       

The  is given in Fig. 12 for two values of b=0.13 and b=0.085 – these values describe 

the previously studied flow best. As seen from Fig.12, the results for  agree on the whole 

with (3) to an accuracy of fluctuations both in the two-material variants and in the single-

material calculation (at some delay in this case).  

zyE

ikE

Fig. 13 plots the time curve of TMZ-maximum squared density fluctuations mR  

2max( )mR ρ′≡ < > .         

As follows from the Fig. 13, at the first stage of the 3D computation, the values of  mR    

in the single concentration computations are significantly  lower than those in the computations 

with two concentrations. At the next stage, in the single-fluid computation, the values of mR  

drop. In the two-fluid 3D computation, these values remain essentially constant – the situation is 

similar to the case of the acceleration discussed in ref. [11].  

Fig. 14 plots the time curve of TMZ-maximum (modulo) turbulent mass flow: 

( )
( )

max , 0
max 0

z z
zm

z z

R R
R

R R
>⎧

≡ ⎨− − <⎩
 where: z zR uρ′ ′≡< >  .    

     

Like for , from Fig. 14 it follows that at the end of the first stage, the mk zmR ’s taper off to 

a value close in all the variants. At the next stage the positive turbulent flow abruptly decreases 

and a negative flow appears, with severe fluctuations being observed. On the whole, the 

behaviors of ( )zmR t  are close in all the variants, except for the time shift already mentioned. 

2.4 Profiles of the quantities 

Fig. 15 compares the turbulent mass flow profiles z zR uρ′ ′≡< >  from the 3D 

computations. At the end of the first stage the profiles are quite close. Then their amplitude 

deceases (as mentioned above, with some time delay in the single-material computation). In so 

doing the most noticeable decrease is in the heavy material TMZ, it is precisely there, where 

negative values of  zR  appear by time τ~1.6. 

16a ÷ 18a plot the profiles of velocity, density, and turbulent energy from both one-

material and two-material computations, Figs. 16b ÷ 18b the profiles of Richardson number 

2 .
z

y

g
zRi

u
z

ρ

ρ

∂
∂≡

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠
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As seen from the figures, at the first stage the velocity and density profiles are close in 

their shape and position, with taking into consideration the time shift in the single-material 

computation. However, for τ>1.4 in this computation, unlike in the two-material computation, a 

shelf forms in the density profile. Accordingly, the peak turbulent energy near the shelf proves 

higher, as it would be expected with taking into account that the velocity profiles are therewith 

close in the two variants. 

As seen from Figs. 16b ÷ 18b, at the end of the first stage the Richardson number profiles 

bear a qualitative resemblance, that is: in the heavy material region they produce a “barrier” 

inhibiting turbulence and impeding the material and vorticity penetration into the region (recall 

that the critical value of the Reynolds number is ). This accounts for the dominant 

expansion of the velocity and density profiles toward the light material: the resultant asymmetry 

becomes noticeable, as compared to the unstable stratification. 

0.5Ri ∼

2.5 Concentration probability distribution density function 
The data from the numerical computation has been used to determine the one-point heavy 

material mass concentration probability distribution density function 
( ) ( )
2 2 2

2
0

( ( ) ( )) ( ( )( , , )
ik ikN c z c c N c z cF c z t

N c
≥ + ∆ − ≥

=
∆

2 ) ,      

here is the number of points in a given horizontal plane z, at which the 

current concentration is larger than c

)c)z(c(N 2
)ik(

2 ≥

)(
2
ikc 2, No(z) is the total number of points in the plane. 

The c2 runs a range of M numbers  

cMc ∆−= )1....,,2,1,0(2 , 

where ; in our computations, M=100. 1cM =∆

Fig. 19 plots the functions F(c2) calculated from the source array (without averaging) of 

the concentrations  for the TMZ region close to the light material at times τ=1 (the end of the 

first stage) and τ=2 (a noticeable inhibition of the turbulence) in the two-material computation 

performed on a fine grid ( =200). The figure plots the vertical coordinate z (counted from the 

interface) divided by TMZ width L

2c

xN

t, that is: c

t

z z
L

η −
≡ . As the curves for τ=1 and τ=2 are taken 

for the same z, the relevant 1η  and 2η  prove different. The maximum values of the function F(c2) 

can be seen to be achieved mainly near c≈1 and c≈0, that is, the F(c2) is concentrated (is of the 

form of the δ-function) at the extreme points of the concentration range. However, in the major 

range of c2 its value is low (F(c2)<0.1-0.2); physically, this is close to immiscible fluids, which is 

characteristic of problem  descriptions using 3D computations with two concentrations (see also 

[11]). 
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Next, before we find F(c2), average the concentration array with the formula:  

, , ,

( )
2 2( , , , ) ; 1, 2....

l x y z

n
zc l x y z c n N= 〈 〉 =  

where l=rh, r=2 , when r≥2 (but r<<min(Nx,Ny)), the resultant functions F(c2) differ slightly, 

whereas for r=1 the difference is radical: as we have seen, the F(c2) is close to two δ-functions, 

δ(0) and δ(1). 

Now find F(c2) with averaging of the initial concentration array assuming r=2 . 

Figs. 20 and 21 compare thus found functions F(c2) for times  τ=1 and τ=2, for two 

computation variants: with one and two materials, with the latter being on a fine grid ( =200).  xN

From Figs. 20 it is seen that in the TMZ region adjacent to the heavy material ( 0.2η < − ), 

the maximum values of F(c2) are achieved closer to c2≈1, that is, the heavy material particles are 

most probable. A close behavior of the F(c2) is in the two-material computation. 

A noticeable discrepancy between the above variants begins in the central TMZ part 

adjacent to the light material: in the single-material computation the maximum F(c2) is achieved 

in the middle of the c2 values, whereas in the two-concentration variant the F(c2) proves 

concentrated to a large extent near the end values of the c2 range, although not so significantly as 

for r=1 – the characteristic value within the interval: c2≈0.5.  

Finally, in the TMZ region adjacent to the light material ( 0.2 0.3η > ÷ ) the maximums of 

F(c2) are achieved closer to c2≈0 in either computation, that is, the light material particles are 

most probable. 

2.6 Velocity and density fluctuation spectra 

As known [12], the average squared fluctuation of the i-th velocity component 2
iu′  (with 

no summation over i) is related to the associated one-dimensional spectral density ( )iE k  as: 

2

0

( )i iu E k d
∞

′ ′= ∫ k ′ . Note that in our case the averaging over ensemble corresponds to that in 

the horizontal plane X,Y. Hence, 2
iu′  is a function of z. 

Following [12], relate any fixed k to division of energy 2
iu′  into two parts: 

2

0

( ) ( )
k

i i i
k

u E k dk E k dk
∞

′ ′ ′= +∫ ∫ ′ ′ .           

This division is correspondent with the division of the field of prompt values  into 

macrocomponent 

iu

iu  (with energy 
0

( )
k

iE k dk′ ′∫ ) and microcomponent iu  (with energy 
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( ) ( )i i
k

E k E k d
∞

′= ∫ k ′ ), see ref. [12]. In ref. [12], ( )iE k ′  is referred to simply as a spectrum – one-

dimensional spectral density of field  that corresponds to the correlation function of this field 

is meant. Kolmogorov spectrum takes place in the inertial turbulence interval: .  

iu

5/ 3( ) ( )iE k k −′ ′∼

It is our view that ( )iE k  has a more profound physical meaning. It determines doubled 

specific kinetic energy of fluctuations of the i-th velocity component of wavelength 2
k
πλ ≤ . 

The Kolmogorov spectrum for ( )iE k ′  as well as for the total energy of all components 

 is evidently correspondent with dependency 2 / 3( ) ( )i
i

E k E k k −≡ ∑ ∼ 2 / 3( ) ( )iE k E k k −∼ ∼ , we 

will also term it the Kolmogorov spectrum of turbulent energy ( )E k  and its components ( )iE k . 

The computed data was used as a basis to study the spectrum of the turbulent energy and its 

components in accordance with formula 

, , , , , ,

( ) 2 2

( )

( , , , ) ; 1, 2....

( , ) ( , , , ) ; , 2, 3.... .
l x y z l x y z

n
i i i

n
i i x

zE l x y z u u n N

E l z E l x y z l rh r N

= 〈 〉 − 〈 〉 =

= 〈 〉 = =
.      (4) 

Here the averaging 
, , ,l x y z

〈〉  is performed in the n-th layer (over z) in a square with side l (l=rh, h is 

the computational cell size), whose center coordinates are x, y, z, and then the averaging ( 〈〉 ) is 

over all possible values of x, y in the squares with the value of l, z in the entire n-th layer. There 

is no summation over i in (4). Next  
3

1

( , ) ( , )
i

i
i

E l z E l z
=

=

= ∑  .       

The computed data for several times in the computation on the grid with =201 are 

presented in Figs. 22, 23 as curves lg  (where k=2π/l) for different values of 

the scaled coordinate 

xN

(lg ) , lg (lg )iE k E k

c

t

z z
L

ζ −
≡ . 

The figures also present the Kolmogorov spectrum of turbulent energy 

2lg lg
3

E k const= − + .       

As seen, inside the TMZ (0.4>  ζ  > -0.4) there are intervals of wave numbers K, on 

which the spectrum of total energy E is close on the whole to the 3D Kolmogorov spectrum. 

However, for some components the difference from the Kolmogorov dependency is significantly 

larger. Note that for large space scales (low K) is dominant, as it must for the shear flow 

according to the phenomenological model [10] and the measurements [7,8]. However, for small 

yE
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scales (high K) xE is dominant at nearly all TMZ points. A most apparent reason is the action of 

the scheme viscosity, which is noticeable just for small scales and inhibits precisely the 

components , as for large scales it is y and z that are the major velocity directions 

generating the anisotropic scheme viscosity in small scales. Note that, as seen from Figs. 22 and 

23, the anisotropy increases from the center of the TMZ to its edges, as the velocity module 

determining the scheme viscosity also increases. A similar scheme viscosity effect is treated in 

more detail in ref. [13].  

,y zE E

A similar spectral quantity is calculated for the squared density fluctuations: 

, , , , , ,

2 2( , ) ; 1, 2....

( ) ( , ) ; , 2, 3.... ;
l x y z l x y z

n
l z

n
l l x

R x y n N

R z R x y l rh r N

ρ ρ= 〈 〉 − 〈 〉 =

≡ 〈 〉 = =
    

it is shown in Figs. 24 through 26.  The figures also present the Kolmogorov spectrum of the 

squared density fluctuations (see also ref. [12]) 

2lg lg
3lR k const= − + .         

As seen from Fig. 24, at the first stage (τ=0.6), when the mixing is mainly of the shear 

nature, in small scales the spectrum is close to the Kolmogorov spectrum in the 3D 

computations. The best agreement is observed for negative scaled coordinate ζ , that is, in the 

region of the heavy material; in the region of the light material a deviation from the Kolmogorov 

spectrum becomes noticeable. 

At the next stage (τ=1.2), when the shear mixing begins to be inhibited due to stable 

stratification, as it is seen from Fig. 25, the density spectrum begins to differ more significantly 

from the Kolmogorov spectrum, with this being to a greater extent in the light material region. 

The difference of the spectrum from the Kolmogorov spectrum is even larger for a later stage 

(τ=1.8) depicted in Fig. 26. 

This agrees with the concepts of ref. [12] about the density spectrum behavior for 

immiscible fluids given the stable stratification leading to the change of sign in the turbulent 

mass flow. 

3 Results of k ε−  computations 

Fig. 10  plots the time curve of the TMZ width from the k ε−   calculations for several 

values of , 0.4, 1. As it would follow from the conclusions of Section 2.2, all the curves 

of scaled 

0.2zg =

( )tl τ  are close for these values, that is, are of a universal form independent of . zg

At the initial stage (τ<1-1.5) the slope of the curves is close both to the 3D computations 

and to the associated experimental data as well to the data of refs. [3,4]. 
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At the following times the slope decreases, like in the 3D computations, but, in contrast 

to them, in the k ε−  computations there is no boundary effect. In the variant most advanced in 

τ with g=1, there is essentially no growth in , while  tapers off to the linear dependence 

on τ ; in so doing, however, the angle of slope of 

( )c
tl

( )u
tl

( ) ( )u
tl τ  is much smaller (by about an order of 

magnitude) than that at the first stage. The maximum values are , , which 

agrees with the data of refs. [3,4], i.e.  

( ) 0.36c
tl ≈ ( ) 0.5u

tl ≈

0.45tl ≈ . 

The time histories of turbulent energy (t) maximum in the TMZ width in the mk k ε−   

computations and in the 3D computations are quite close (Fig. 11), providing the delay (shift in 

time) in the latter is taken into account. In the variant most advanced in τ with g=1, (t) tapers 

off to an essentially constant value, which is lower by about an order of magnitude than that at 

the first stage. 

mk

Figs. 16a÷18a plot velocity, density and turbulent energy profiles from the k ε−  

computations and Figs. 16b ÷ 18b Richardson number profiles. As seen from the figures, at the 

first stage the velocity and density profiles are close in their shape and position to those from the 

3D computations with taking into consideration the time shift. For τ>1.5 the turbulent energy 

profiles from the k ε−  computation are closer to those in the 3D computation on the fine grid, 

although are somewhat wider, which is due in part to the time shift in the latter.  

The Richardson number profiles, as seen from Figs. 16b ÷ 18b, are also much like those 

from the 3D computation on the fine grid, in particular, in the region of the heavy material, 

where they form a turbulence inhibiting “barrier” (see Section 2.4).  

Conclusions
           The results of the TREK direct 3D numerical simulation of the turbulent shear 

gravitational mixing with stable stratification were as follows. 

At the first (unstable) mixing stage, when the shear turbulence generation is prevailing, 

the TMZ width behavior is much alike in all the computations and agrees with the associated 

experimental data [7-9] as well as the data of computations [3,4] by the phenomenological 

model. 

The TMZ-maximum scaled turbulent energy  (agreeing with the experimental data [7-

8]) and turbulent mass flow achieved at the end of the first stage are also close in all the 

computations, while the TMZ-maximum squared density fluctuations are significantly lower in 

the computations with one concentration than in those with two concentrations.  

mE

The second (stable) stage, where the turbulence is inhibited, proceeds with 1 1.5τ > − .  It 

is correspondent with decrease in the TMZ width growth rate and noticeable decrease in 
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turbulent energy . The TMZ-maximum values mE mR  of the squared density fluctuations also 

decrease in the single-fluid computation. In the 3D two-fluid computation these values remain 

essentially constant: the situation is similar to the case of the alternating-sign acceleration 

discussed in ref. [11].  

Inside the TMZ, in the single-material computation the one-point heavy material mass 

concentration probability distribution density function F(c2) achieves its maximum in the middle 

of the c2 range, whereas in the two-material computation the F(c2) proves largely concentrated 

near the extremes of the c2 range. 

In the k ε−  computations, the TMZ width growth rate at the initial stage is close to the 

3D computations and measurements. The decrease in the rate at the next stage agrees 

qualitatively with the 3D computations. The nature of the decrease in the turbulent energy  at 

that stage is also close to the 3D computations. 

mE
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τ=2 

Fig. 2. Raster patterns of the heavy material concentration in the 3D computation on grid 
=100 xN

  
Fig. 3. Raster patterns of the heavy material concentration in the 3D computation on grid 

=100, τ=4 xN
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Fig. 4. Raster patterns of the heavy material concentration in the 3D computation on grid 

=200, τ=0.4 xN

 
τ=0.6 
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τ=0.8 

Fig. 5. Raster patterns of the heavy material concentration in the computation on grid =200 xN

 
τ=1 
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τ=1.4 

Fig. 6. Raster patterns of the heavy material concentration in the 3D computation on grid 
=200 xN
 

 
τ=1.6 
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τ=1.8 

Fig. 7. Raster patterns of the heavy material concentration in the 3D computation on grid 
=200 xN
 

 
τ=2 
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τ=2.2 

Fig. 8. Raster patterns of the heavy material concentration in the 3D computation on grid 
=200 xN
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Fig. 9. Raster patterns of the velocity components in the 3D computation on grid =100 (single 

material), τ=2 
xN
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Fig. 10. TMZ width versus time. : 1 – 3D computation with =200, 3 - 3D computation 
with =100, 5 - 3D computation with =100, one material, 10 - 1D computation with g=0.2, 
12 - 1D computation with g=0.4, 14 - 1D computation with g=1. : 2, 4, 6, 9, 11, 13 – in the 
relevant variants. 7,8 – approximation to experimental data [7-9]. 
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Fig. 11. TMZ-maximum turbulent energy versus time. 1 – 3D computation with =200, 7 - 3D 
computation with =100, 8 - 3D computation with =100, one material, 4 - 1D computation 
with g=0.2, 5 - 1D computation with g=0.4, 6 - 1D computation with g=1.     2,3 – approximation 

to experimental data [7,8] 
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Fig. 12. Velocity fluctuation anisotropy versus time. The analytical solution for the initial stage: 
1 - , 2 - xzE zyE , b=0.085; 3 - zyE , b=0.13; 3D computations: 4,6,8 - , 5,7,9  xzE zyE ; 4,5 – 3D 
computation with =200, 6,7 - 3D computation with =100, 8,9 - 3D computation with 

=100, one material 
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Fig. 13. TMZ-maximum squared density fluctuation versus time 
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Fig. 14. TMZ-maximum (modulo) turbulent mass flow versus time in the 
computations: 1 – =200, 2 - =100, 3 - =100, one material xN xN xN

 
  

 
Fig. 15. Turbulent mass flow profiles in the 3D computations: 1- =100, one material, 2 - 

=100, two materials, 3 - =200, two materials 
xN
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(a) 

(b) 
     

Fig. 16. τ=1.2. a) rofiles of velocity (1-3), density (4-6), turbulent energy (7-9); 1,6,7 - =100, 
one material, 2,4,8 - =200, two materials, 3,5,9 - 

xN

xN k ε−  model. b) Ri number profiles; 1 - 
=200, two materials, 2 - =100, one material, 3 - kxN xN ε−  model 
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Fig. 17. τ=1.68. a) Profiles of velocity (1-3), density (4-6), turbulent energy (7-9); 1,6,7 - 

=100, one material, 2,4,8 - =200, two materials, 3,5,9 - kxN xN ε−  model. b) Richardson 
number profiles; 1 - =200, two materials, 2 - =100, one material, 3 - xN xN k ε−  model 

u

 

 

 
Fig. 18. τ=2.16. a) Profiles of velocity (1-3), density (4-6), turbulent energy(7-9); 1,6,7 - 

=100, one material, 2,4,8 - =200, two materials, 3,5,9 - kxN xN ε−  model. b) Richardson 
number profiles; 1 - =200, two materials, 2 - =100, one material, 3 - xN xN k ε−  model 
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Fig. 19. Heavy material mass concentration probability distribution density function in the 3D 
computation (without initial concentration array averaging) on grid =200, two materials. 1- 
τ=1, 2 - τ=2 

xN

  

  
   a)      b) 
Fig. 20. Heavy material ma oncentration probability distribution density function in the 3D 
computations (with initial concentration array averaging, r=2): a) – grid =100, one material, 
b) - grid =200, two materials. 1- τ=1, 2 - τ=2 
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ig. 21. Heavy material mass concentration probability distribution density function  3D 
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Fig. 22. Spectrum of the turbulent energy and its components in the computation on grid 

=200, τ=1.2; 2 - Ex, 3 - Ey, 4 - Ez, 5 – E; 1 - Kolmogorov spectrum xN
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Fig. 23. Spectrum of the turbulent energy  and its components ( )E k ( )iE k  in the computation on 

grid =200, τ=1.8; 2 - Ex, 3 - Ey, 4 - Ez, 5 – E; 1 - Kolmogorov spectrum xN
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Fig. 24 Spectrum of the density fluctuations lR  in the 3D computation on grid =200, τ=0.6; 

 1 - Kolmogorov spectrum, 2 –computation 
xN
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Fig. 25. Spectrum of the density fluctuations lR  in the 3D computation on grid =200, τ=1.2;  

1 - Kolmogorov spectrum, 2 –computation 
xN
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Fig. 26.Spectrum of the density fluctuations lR  in the 3D computation on grid =200, τ=1.8; 

 1 - Kolmogorov spectrum, 2 –computation  
 

xN
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