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This paper studies shear turbulence growth at a plane interface of two incompressible fluids 

of constant density using 3D code TREK.  The computed data is compared to phenomenological 

model data and associated well-known experimental data. 

 
Introduction. A simplest shear flow, i.e. one-dimensional unsteady plane mixing layer, is 

considered. Under certain conditions, many more complex flows are close to it: initial portion of 

plane and round jets, initial stage of mixing in cylindrical vortex, etc.  

Previously [1] we studied the problem using DNS with 2D code [2] and in refs. [3,4] with 

3D code [6]. The results were interpreted using a variation of semiempirical theory [7] that 

includes the Reynolds tensor anisotropy.  

          This paper studies the problem of shear turbulent mixing at a plane interface of two 

incompressible fluids of constant density using the DNK with 3D gas-dynamic code TREK [6]. 

Fluids were considered to be distinctive, i.e. physically immiscible. The computations were 

performed on a much finer computational grid than in refs. [3, 4]. 

The turbulent mixing zone width (TMZ), profiles of velocity, turbulent energy, mean-

square fluctuations of the longitudinal and transversal velocity components are compared to the 

measurements of refs. [9-11]. The results of the 3D computations are also compared to the data 

of the semiempirical theory of turbulence that accounts for the Reynolds tensor anisotropy. The 

spectral analysis of the velocity fluctuations in the TMZ is conducted. Besides, in contrast to all 

previous computations for the problem, the concentration probability density function is found 

from the numerical arrays of the hydrodynamic quantities from 3D computations. 

1. Setting up the TREK computations. The problem is formulated much like in refs. [3, 

4, 8]: at the initial time two half-spaces separated by a plane interface z= =0 are filled with 

ideal gases of density 

cz

0ρ =1 at pressure 0p =15. In region 1 (concentration с=1) the gas flows 

parallel to the interface at velocity w≡ y
t

∂
∂

 = /2 =0.5, in region 2 (concentration с=0) at 

velocity w = -0.5(Fig.1). The computational domain is a parallelepiped, with its vertical side of 

the side face being Λ=2. Its horizontal face is a square with side  =

0w

xL yL =1.5. 
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Fig. 1. Geometry of the problem 

Here the coordinate of the top face is 2z = Λ/2, that of the bottom face is 1z = -Λ/2. At the 

initial time, random perturbations of either of the following two quantities are given at the 

interface (in a layer one cell thick): 

a) density:   δρ= ± 1ρ ⋅δ,     where δ= 0.1. 

b) tangent to the boundary of velocity component w=±0.1 wo. 

In so doing we used two sets of random numbers. 

The computational grid is uniform (the cell size is = = ) with = ,  cells. 
Several computations have been performed, in which /Λ and the number of the cells were 
varied (see Table 1). 

xh yh zh xN yN zN

xL

 
Table 1 – Variants of the computations 

Varia

nt No. 

Number of cells 
NxxNyxNz  

Perturbed 
quantity 

Λ xL  Random perturbation spectrum 
at the boundaries 

1 100x100x100 density 1 1 1-st spectrum 

2 100x100x100 velocity 1 1 1-st spectrum 

3 100x100x100 velocity 1 1 2-nd spectrum 

4 150x150x200 velocity 2 1.5 1-st spectrum 

5 200x200x400 density 2 1 1-st spectrum 

6 300x300x400 density 2 1.5 1-st spectrum 

Gas dynamics equations for ideal medium (with zero molecular viscosity) are solved. The 

equation of state is ideal gas with adiabatic constant γ=1.4.  

Note that the pressure is such, that in the computations the incompressibility condition 

was met well for this turbulent flow by virtue of relationship wo
2<<γpo/ρo. The periodicity 

condition with period  was posed on the external region boundaries parallel to OZ and the 

“rigid wall” condition on the others. 

xL

2. Results of 3D computations: integral characteristics. The results of the computations 

are shown in Figs. 1 through 4 as raster patterns of the velocity components for different times, 
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in different sections normal to the interface, but parallel to the initial velocity (sections x=const). 

A feature common to all the variants is the most “smoothed” pattern for the component  

directed “with stream” (unperturbed). For  the pattern is less smoothed, but, like for , 

regular large vortices are observed. Irregular small-scale perturbations are most characteristic of 

, see also below. Thus, the largest vortices are of two-dimensional nature and revolve about 

the axis directed along OX.  

yu

zu yu

xu

The flow evolution as a whole is similar to the previous computations [1, 3-4]: vortex 

enlargement with time and tapering-off to the self-similar regime are observed. 

For this stage the latter manifests itself, in particular, as tapering-off to the linear time 

dependence of TMZ width Lt(t). Here ≡tL 2z  - 1z   is the TMZ width in z direction that is 

determined  from points 1z , 2z , at which small enough value ε of an averaged hydrodynamic 

quantity, for example, concentration <c2>(z) or velocity w(z)≡<uy>, is reached. The averaging 

was in plane z=const parallel to the interface plane. 

Next, assume that (c 1z )=ε, (c 2z )=1-ε, 2c c≡< >  is the mass fraction of the material, 

whose velocity was wo at the initial time. In another way, w( 1z )= -(1-ε)wo/2, w( 2z )=(1-ε)wo/2. 

Below we assume ε=0.1. 

The curve (t) is shown in Fig.5 for all the computation variants. Relevant straight line tL

( )apprL t , a linear approximation with =const that is closest to the 3D computation results for a 

given variant, is also plotted for each of the variants.   at the self-similar stage is presented in 

Table 2; it is seen to be about the same in all the variants with accuracy to its estimation error. 

Maximum scaled turbulent energies k

L

L

m at the self-similar stage are also close in the two variants 

(see Table 2). 

Table 2 – Integral values 

Variant 

No. 

Number of 
cells 

NxxNyxNz  

Λ xL  L  km

1 1003 1 1 0.1 0.033-0.037 

2 1003 1 1 0.1 0.027 

3 1003 1 1 0.09 0.036 

4 1502x200 2 1.5 0.1 0.037 

5 2002x400 2 1 0.1-0.115 0.042 

6 3002x400 2 1.5 0.08-0.09 0.0342 
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The results of the computations are also illustrated in Fig.6 plotting σ=1.85∆y/∆z. In the 

latter case, as in ref. [1], length (y-yo) of the jet appearing in the experiments is related to time (t-

to):  

   
1 2

2
1 2

1

(1 ) ( )( ) ( )( )
2(1 )

; .

o o
o o

o

m w t ty y w w t t
m

wm w w w
w

;+ −
− = + − =

−

≡ ≡ −
                        

Each tdLL
dt

≡  is therewith correspondent with a curve in Fig. 6. 

In Fig. 6 different points show experimental data of different authors that are presented in 

refs. [9, 10]. As seen, there is a satisfactory agreement with the experiments for all the variants. 

The self-similar regime of this problem is also correspondent with the tapering-off to the 

stationary value – the TMZ width maximum turbulent energy is ( ) max( )mk t k≡ ( ) iik z E= , 

where  ( )
2

i k i k
ik

u u u uE z < > − < ><
≡

> ,       

the averaging (denoted with < >) is performed over the entire section z=const. 

The curve is plotted in Fig. 7. As seen from the figure (see also Table 2), in all the 

3D computations the maximum values of k

( )mk t

m  are quite close. 

In the self-similar regime, the value of the velocity fluctuation anisotropy (Reynolds 

number) characteristic of TMZ must be stationary: 

( ) max( ) / max( )ik ii kkA t E E≡  ,     (1) 

where TMZ width maximum diagonal components of tensor (1) appear – there are no summation 

over subscripts i, k. 

The results in the form of time dependence of  are shown in Fig. 8. As seen, the 

Reynolds tensor anisotropy is pronounced in the 3D computations, with the “longitudinal” 

component of the turbulent energy (i.e. of the diagonal part of Reynolds tensor Е

ikA

ii) being larger 

than the “transversal” components in the mixing zone. 

According to turbulence model [7] including the Reynolds tensor anisotropy, relations                       

     Rxx= Rzz;      
1/ 3

1/ 3 2
zz

zy
yy

R bA
R b

−
= =

+
                                          (2) 

are valid.  

For most variants the results agree with (2) at the self-similar stage. 
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3. Profiles of the quantities in the 3D computation. Fig. 9 plots the velocity profiles for 

the self-similar stage of the variants under discussion. The argument is 

( )0 0

cz z
w t t

η −
≡

−
,        

here  for each variant is found from Fig. (9) reasoning from condition .  0t 0( ) 0apprL t =

As seen from Fig. 9, the agreement between the computed velocity profiles and the ones 

measured in refs. [8,9] is satisfactory.  

Turbulent energy profiles ( )k η  for the self-similar stage of the variants under 

consideration are shown in Fig. 10. As seen, the computations lead to a satisfactory agreement 

with the measurements of refs. [8,9] (in the experimental data processing we assumed that the 

two transversal velocity fluctuation components were equal). The same is true for the mean-

square fluctuation profiles of longitudinal velocity component yu E′ ≡ yy  shown in Fig. 11 as 

well as for those of transversal velocity component zu E′ ≡ zz  that are shown in Fig. 12: the 

agreement between the computations and the measurements of ref. [9] is satisfactory on the 

whole. 

4. Velocity fluctuation spectra. The computed data was used as a basis to study the 

velocity fluctuation spectrum in accordance with formula 

, , , , , ,

( ) 2 2

( ) ( )

( , ) ; 1, 2....

( ) ( , ) ; , 2, 3.... .
l x y z l x y z

n
il i i z

n n
il il il x

E x y u u n N

E z E E x y l rh r N

= 〈 〉 − 〈 〉 =

= = 〈 〉 = =
.      (3) 

Here the averaging 
, , ,l x y z

〈〉  is performed in the n-th layer (over z) in a square with side l (l=rh, h is 

the computational cell size), whose center coordinates are x, y, z, and then the averaging ( 〈〉 ) is 

over all possible values of x, y in the squares with the value of l in the entire n-th layer. There is 

no summation over i in (4). Next: 

∑
=

=

=
3i

1i
iill EE .        

The computed data for several times in different variants are presented in Figs. 13 and 14 

as curves  (where K=2π/l) for different values of the scaled coordinate lg (lg ) , lg (lg )il lE K E K

c

t

z z
L

ζ −
≡ . The figures also give Kolmogorov spectrum 

lgEl= -2/3 lgK +const.       

As seen, inside the TMZ (0.4>  ζ  > -0.4) there are intervals of wave numbers K, on 

which the spectrum of total energy El is close on the whole to the 3D Kolmogorov spectrum. 

Also note that on small space scales (high K) the velocity fluctuations become anisotropic: the x 
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component becomes dominant, whereas the z component and particularly the y component are 

inhibited dramatically. 

This is just in what the problem under discussion differs from the gravitational turbulent 

mixing, in whose modeling (see [11]) the velocity fluctuations, conversely, become isotropic at 

high K – all components become close. A reason for this is that for the gravitational turbulent 

mixing the averaged velocity is zero, whereas for the shear mixing it is nonzero. In this case the 

role of the scheme viscosity manifests itself significantly. The numerical technique TREK 

employs the difference scheme of the first approximation order, whose scheme viscosity can be 

evaluated in the event of quasi-stationary flows by writing the momentum transfer equations as 

follows:  

iilE

( )

( )

2 2
1

2 2
2

, ,
4 4 4

,
4 4 4

x x x
x x y z

y y y
y x y z

z
z

u u u uP h h hdiv u u u u u h
t x x x y y z z
u u u uP h h hdiv u u u u u h
t y x x y y z z

u Pdiv u u
t z

∂ρ ∂ ∂ ∂∂ ∂ ∂ ∂ρ ρ ρ ρ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ρ ∂ ∂ ∂∂ ∂ ∂ ∂ ,

x

y

τ

ρ ρ ρ ρ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ρ ∂ ∂ρ
∂ ∂

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + = + + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + =

τ

( )2 2
2 , .

4 4 4
z z z

x y z
u u uh h hu u u

x x y y z z
∂ ∂ ∂∂ ∂ρ ρ ρ θ

∂ ∂ ∂ ∂ ∂ ∂
⎛ ⎞⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
h τ

           (4) 

The right-hand sides of equations (4) can be treated as derivatives of the approximation 

viscosity stress “tensor” components. They can be written as: 

   
1
4

i
ik k

k

uh u
x

∂σ ρ
∂

=  ,                       (5) 

where uk is the characteristic flow velocity. We put the term “tensor” in quotes, as neither  (4) 

nor (5) is a tensor. 

Nevertheless, relation (5) is similar in its form to the expression for the viscous stress 

tensor components appearing in the Navier-Stokes equations. Here the role of the molecular 

viscosity factor, which is a scalar, is played by the scheme viscosity factor, which is a vector 

    1
4ck kh uµ ρ= ,    1

4ck khuν =        

depending on the flow velocity and computational cell size h. 

Evidently, the scheme viscosity effect should show up most of all at the smallest scales 

(high K), which is just observed in Figs. 13 and 14. As mentioned in Section 2, the largest shear 

flow vortices are of 2D nature and rotate about the axis directed along OX. Then not only the 

largest average component , but also quite large component will influence the scheme 

effects on small scales. It is these components, in contrast to  (the average of which are zero 

on nearly all scales), that should be inhibited to the largest extent on these scales, which is just 

confirmed by Figs. 13 and 14. On a finer grid the scheme viscosity effect should be smaller and 

yu zu

xu
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the spectrum closer to the Kolmogorov spectrum. This is confirmed by the comparison between 

Fig. 13 and Fig. 14 for variant 5 on a finer grid.  

On large scales (low K), either y or (in some points) x velocity fluctuation component is 

predominant. 

5. Concentration probability density function 

The data from the numerical computation has been used to determine the one-point mass 

concentration probability distribution density function for the material that initially had velocity 

w ≡  y
t

∂
∂

 = wo/2 =0.5 and coordinate z>zc

( ) ( )

0

( ( ) ) ( ( ) ( )( , , )
ik ikN c z c N c z c cF c z t

N c
≥ − ≥ + ∆

=
∆

)

)

,     

here  is the number of points in a given horizontal plane z, at which the current 

concentration  is larger than с; N

( )( ( )ikN c z c≥

( )ikc o(z) is the total number of points in the plane. The с runs 

a range of M numbers    (0, 1, 2, ...., 1)c M c= − ∆ 1cM =∆, where: ; in our 

computations,  М=100. 

Recall that before determination of F(c) the concentration array is averaged according 

to formula 

, , ,

( ) ( , , , ) ; 1, 2....
l x y z

n
zc l x y z c n N= 〈 〉 =  

where l=rh, r=2. In fact, for r≥2 (but r<<min(Nx,Ny)) the resultant functions F(c) differ 

insignificantly, whereas for r=1 the difference is drastic: the F(c) is close to two δ functions, δ(0) 

and δ(1). 

As Figs. 15 and 16 show, the form of the function F(c) in variant 6 is much alike for 

times t=6.2 and t=9.  Near the TMZ boundary adjacent to the material of initial concentration 

с=1 ( c

t

z z
L

ζ −
≡ =0.49), the maximum values of F(c) are mainly near c≈1. The F(c) is therewith 

concentrated in a narrow region c≈1 (it has the form of the δ function), while in the major range 

of с it is essentially constant and small (F(c)<0.2). 

 Inside the TMZ, as the plane of symmetry ( 0ζ = ) is approached, the F(c) becomes 

uniformly distributed over the concentration range and increases.  

Conclusion. The direct 3D numerical simulation of shear mixing that had been 

performed with the code TREK [6] showed that the self-similar regime took place on some time 

interval in all the computations. It is correspondent with constant TMZ width growth rate , 

which is about the same for all the computations. Its value agrees satisfactorily with the 

experimental data. 

L
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TMZ maximum turbulent energies  also remain constant in this regime. Its values are 

also close in all the computations. 

mE

For this problem, the self-similar regime also involves the tapering-off to stationary 

velocity fluctuation anisotropy, in the 3D computation its value is described satisfactorily by the 

phenomenological model [7] with semiempirical coefficient b=0.085. 

For all the variants at the self-similar stage of the computations under discussion, the 

computed velocity profiles agree satisfactorily with those measured in ref. [9]. The self-similar 

stage turbulent energy profiles ( )k η  agree satisfactorily with measurements [8,9]. The 

calculations on a finer computational grid ensure a better agreement with the measurements. The 

longitudinal and transversal velocity component mean-square fluctuation profiles agree 

satisfactorily with measurements [9], the best agreement is for the finest computational grid.  

Inside TMZ, the spectrum of total energy El of velocity fluctuations in the 3D 

computations is close on the whole to the 3D Kolmogorov spectrum: the finer is the grid, the 

closer is the spectrum.  

There are the following features in the problem, in which it differs from the gravitational 

mixing problem: 

• the largest vortices are of 2D nature and rotate about the axis directed along OX, 

• on small scales the x component of velocity fluctuations is dominant, as the scheme 

viscosity effects inhibit the y component and z component.  

As mentioned in Introduction, these computations are close in their setting to the previous 

computations [3,4], but differ in a significantly finer computational grid. As seen from this 

paper, the grid provided a significantly better agreement with the experimental data. 

This problem clearly demonstrates the possibilities of the 3D shear mixing simulations 

and, at the same time, reveals demerits of the computational technique used that possesses a 

dramatic scheme viscosity. It is being planned that the studies would be continued with using 

other numerical techniques as well. 
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Fig. 1. Raster patterns of velocity components: a) uz, b) uy c) ux; variant 1, x=const (i=50),  

left: t=4; right: t=8 
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Fig. 2. Raster patterns of velocity components: a) uz, b) uy c) ux; variant 2, x=const (i=50),  

left: t=3.5; right: t=7.5  
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Fig. 3. Raster patterns of velocity components: a) uz , b) uy c) ux; variant 3, x=const (i=50),  
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Fig. 5. Turbulent mixing zone width versus time. The variant numbers are specified in the 
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Fig. 7. Zone width maximum turbulent energy versus time. The variant numbers are specified in 

the figures  
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Fig. 8 – Reynolds tensor anisotropy versus time. The variant numbers are specified in the 

figures. 1 - , 2 - xzA zyA ;  zyA from model [7]: 3 – b=0.085, 4 – b=0.13 
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Fig. 9. Velocity profiles. The variant numbers are specified in the figures. 1, 2 – measurements 
[8,9]. 
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Fig. 10. Turbulent energy profiles. The variant numbers are specified in the figures. 1, 3 – 
measurements [8,9] 
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Fig. 11. Longitudinal velocity component mean-square fluctuation profiles. The variant numbers 

are specified in the figures, 1 – measurements [9], 2 - calculation 
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Fig. 12. Transversal velocity component mean-square fluctuation profiles. The variant numbers 

are specified in the figures . 1 – measurements [9], 2 - calculation 
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Fig. 13. Velocity fluctuation spectrum, variant 1, t=3.5; 1 - Exl, 2 - Eyl, 3 - Ezl, 4 – El,; 

5 - Kolmogorov spectrum 
 
 

 

 22

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



 

0.5 1 1.5 2 2.5 3 3.5
-4.5 

-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

lgE 

lgК 

ζ= -0.36 

 

0.5 1 1.5 2 2.5 3 3.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lgE

lgК 

ζ=0.38 

 
 

0.5 1 1.5 2 2.5 3 3.5
-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

lgE 

lgK 

ζ= -0.26 

 

0.5 1 1.5 2 2.5 3 3.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lgE

lgK 

ζ=0.28 

 
 

0.5 1 1.5 2 2.5 3 3.5
-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

lgE 

lgK 

ζ= -0.13 

 

0.5 1 1.5 2 2.5 3 3.5
-4

-3.5

-3

-2.5

-2

-1.5

lgE

lgK 

ζ=0.13 

 
 

0.5 1 1.5 2 2.5 3 3.5
-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

lgE 

lgK 

ζ=0 

 
Fig. 14. Velocity fluctuation spectrum, variant 5, t=3.5; the notation is the same as in Fig. 13.  
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Fig. 15. Probability density function versus concentration in variant 6, t=9 (M=100). 

Curve 1 corresponds to η = 0.07, curve 2 to η = 0.14, curve 3 to η = 0.21, 
curve 4 to η = 0.37, curve 5 to η =  0.49 

 
Fig. 16. Probability density function versus concentration, t=6.2 (M=100). 
Curve 1 corresponds to η = 0.07, curve 2 to η = 0.14, curve 3 to η = 0.21,  

curve 4 to η = 0.37, curve 5 toη =  0.49. 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

c

f

1 
2 
3 
4 
5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1.4 

0.9
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

c

f 

1 
2 
3 
4 
5 

 24

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel


	Direct 3D Numerical Simulation of Shear Turbulent Mixing
	1. Setting up the TREK computations. The problem is formulated much like in refs. [3, 4, 8]: at the initial time two half-spaces separated by a plane interface z==0 are filled with
	2. Results of 3D computations: integral characteristics. The
	3. Profiles of the quantities in the 3D computation. Fig. 9 
	4. Velocity fluctuation spectra. The computed data was used 
	5. Concentration probability density function

