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• Apply a high-resolution, Eulerian, shock-capturing reconstruction-
evolution method to Richtmyer-Meshkov instability with reshock

• Compare to experimental data (Collins-Jacobs and Vetter-Sturtevant); 
extend simulations/analysis to longer t

• Study dynamics and structure, including mixing: time-evolution of 
global mixing and flow statistics, spectra, terms in evolution equations

• Investigate effects of reshock

• Examine differences between 2D and 3D mixing

The topics of this investigation are essential to the 
development/validation of subgrid-scale and turbulent 

mixing models for complex shock-induced flows

The purpose of this research is to numerically study the 
physics of single- and multi-mode Richtmyer-Meshkov

instability and mixing with reshock in 2D and 3D
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• Euler equations solved using local Lax-Friedrichs flux-split finite-
difference reconstructions

• Convex linear combination of all possible polynomial interpolations taken 
to achieve ENO property
– High-order non-oscillatory solutions obtained using nonlinearly-

weighted set of stencils that avoid crossing discontinuities
– Local characteristic decomposition for flux-splitting

• 3rd-order TVD Runge-Kutta method for time-evolution
• Notable features of code

– 3rd-, 5th-, 7th-, 9th-, or 11th-order WENO reconstruction
– Adaptive domain method increases number of grid points dynamically
– Interface tracked by mass fraction
– Multi-resolution hybridization with high-order central-difference 

schemes

Simulations were performed using the weighted 
essentially non-oscillatory (WENO) method
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Density at t = 5 ms

Vorticity at t = 5 ms

A model of the Ma = 1.21 Collins-Jacobs 
air(acetone)/SF6 shock tube experiment was simulated 

with reshock for initial code validation
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Simulation and experimental density are in good agreement 
initially; lack of rarefaction to slow interface causes reflected 

shock to interact with interface ~ 1 ms sooner

t = 2 .502 ms t = 4.009 ms t = 5.015 ms

t = 2.5 ms t = 4 ms t = 5 ms

t = 7.005 ms

t = 6.47 ms

t = 7.781 ms

t = 6.78 ms

PLIF images from Collins and Jacobs After Reshock

5th-order WENO simulations
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• Zhang and Sohn (Padé) (1997):

• Vandenboomgaerde et al. (2002):

• Sadot et al. (1998):
τ = k v0 t
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Nonlinear perturbation series extended via Padé
approximants can capture nonlinear mixing layer 

width evolution prior to reshock

• Experimental data in best 
agreement with Sadot model

• Simulation data in best agreement 
with Zhang-Sohn (Padé) model

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



IWPCTM 7/04  7

( ) ( ) ( ) ( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=
44444 344444 2144444 344444 21

mesh of
distortion models

mesh through pushed
membrane models

2cos2cos10sin10sin27.0),( zyzyzy ππππη

x (cm)

t (
m

s)

Initial perturbation model:

Simulation Resolutions and Orders

257 × 12923D WENO 9

401 × 2572257 × 12923D WENO 5

1300 × 5402D WENO 5

Ma = 1.5 air/SF6 Vetter Sturtevant experiment with 
wire mesh and membrane is modeled using a

two-mode initial perturbation
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• Time-evolution of mass fraction isosurface in 3D 

• Time-evolution of mass fraction in 2D

Animations
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Mass fraction isosurface from high-order WENO 
simulation shows detailed structure before and 

following reshock
t = 0 ms t = 1 ms t = 3 ms t = 3.25 ms Reshock

t = 3.5 ms t = 5 ms t = 10 ms
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Mass fraction from 2D simulation shows more 
coherency and large-scale structure than in 3D

t = 0 ms t = 1 ms t = 3 ms t = 3.25 ms Reshock

t = 3.5 ms t = 5 ms t = 10 ms
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• Amplitude growth also in generally 
good agreement with Mikaelian
reshock model h(t) = 0.28 A+ [u] t

• Amplitude growth prior to reshock
overestimated
– Limited resolution along shock 

propagation direction
– Choice of initial perturbation 

(membrane break-up issues)

• 2D amplitude growth slightly 
slower than 3D growth before 
reshock, and significantly slower 
after reshock

• da3D/dt > da2D/dt

t (ms)

h(
t)

 (c
m

)

The mixing layer growth is in very good agreement with 
experimentally-measured growth rate following reshock
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• Θ3D > Θ2D so more overall mixing in 3D

• Θ3D and Θ2D differ qualitatively before 
and after reshock

• Both appear to asymptote to different 
values

t

Mixing profile and mixing parameter exhibit different 
spatial and temporal behavior in 2D and 3D
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• Late-time 2D spectrum somewhat steeper than k-3

• Late-time 3D spectrum may have a k-5/3 large-scale spectrum, with 
dissipation dominating at intermediate and small scales

2D 3D
k-3

k-5/3

E
(k

,t)

kk

Reshock amplifies the kinetic energy at all scales
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compensated spectrum

The 401 × 2572 WENO 5 simulation is too limited in 
resolution to exhibit a scaling subrange in the 3D 

kinetic energy spectrum at the mid-slice at t = 5 ms
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The structure and magnitude of the Reynolds stress 
components differ considerably in 2D and 3D, acquiring 

large values after reshock
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transportvortex stretching dilatationbaroclinic production

Baroclinic production is the dominant enstrophy
generation mechanism in 2D, while baroclinic production 
and vortex stretching are the dominant mechanisms in 3D
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Reynolds stress production

pressure dilatation

buoyancy production advection

turbulent transport pressure flux

The buoyancy and Reynolds stress production are 
dominant mechanisms in 3D, and the pressure-

dilatation is also large
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• Simulations of Ma = 1.5 Vetter-Sturtevant experiment before and after 
reshock showed dramatic differences in 2D and 3D

– Mixing layer widths grow differently in 2D and 3D

– Structure of mixing profiles and statistics change following reshock
and are different in 2D and 3D

– Energy spectra showed that fluctuations are significantly enhanced by 
vorticity deposition by second shock

– Yet higher resolution needed in 3D to obtain scaling

– Signature of reshock captured in evolution of kinetic energy and 
enstrophy; nature of fluctuations different in 2D and 3D

– 2D and 3D simulations indicate that, following reshock in 3D, vortex 
stretching and baroclinic production are very important mechanisms

– Reynolds stress and buoyancy production are dominant mechanisms 
in turbulent kinetic energy transport

High-resolution simulations provide flow structure, 
spectra, and statistics of reshocked, multi-mode 

Richtmyer-Meshkov instability
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