Investigation of the Large-Scale and Statistical Properties of Richtmyer-Meshkov Instability-Induced Mixing

¹Oleg Schilling, ²Marco Latini, ³Wai-Sun Don

¹Lawrence Livermore National Laboratory, ²California Institute of Technology, ³Brown University

21 July 2004

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808

IWPCTM 7/04 1

UCRL-PRES-205225

Cambridge, UK

Edited by S.B. Dalziel

The purpose of this research is to numerically study the physics of single- and multi-mode Richtmyer-Meshkov instability and mixing with reshock in 2D and 3D

- Apply a high-resolution, Eulerian, shock-capturing reconstructionevolution method to Richtmyer-Meshkov instability with reshock
- Compare to experimental data (Collins-Jacobs and Vetter-Sturtevant); extend simulations/analysis to longer t
- Study <u>dynamics and structure</u>, including mixing: time-evolution of global mixing and flow statistics, spectra, *terms in evolution equations*
- Investigate effects of <u>reshock</u>
- Examine differences between 2D and 3D mixing

The topics of this investigation are essential to the development/validation of subgrid-scale and turbulent mixing models for complex shock-induced flows

Simulations were performed using the weighted essentially non-oscillatory (WENO) method

- Euler equations solved using local Lax-Friedrichs flux-split finitedifference reconstructions
- Convex linear combination of all possible polynomial interpolations taken to achieve ENO property
 - High-order non-oscillatory solutions obtained using nonlinearlyweighted set of stencils that avoid crossing discontinuities
 - Local characteristic decomposition for flux-splitting
- 3rd-order TVD Runge-Kutta method for time-evolution
- Notable features of code
 - 3rd-, 5th-, 7th-, 9th-, or 11th-order WENO reconstruction
 - Adaptive domain method increases number of grid points dynamically
 - Interface tracked by mass fraction
 - Multi-resolution hybridization with high-order central-difference schemes

A model of the Ma = 1.21 Collins-Jacobs air(acetone)/SF₆ shock tube experiment was simulated with reshock for initial code validation

	THE OWNER	-	1
	-	7	
10	-	7	I

WENO 5 Simulation Parameters				
Domain Size	8.9 cm x 75 cm			
Grid spacing	$\Delta x = \Delta y = 0.02 \text{ cm}$			
Initial perturbation properties	Amplitude a ₀	0.183 cm		
	Wavelength λ	5.9 cm		
	Diffusion thickness	0.5 cm		
Air(acetone)-SF ₆ Properties	Pre-shock Atwood number <i>A</i> ⁻	0.604		
	Adiabatic exponent γ	1.24815		

Density at t = 5 ms

Vorticity at *t* = 5 ms

Nonlinear perturbation series extended via Padé approximants can capture nonlinear mixing layer width evolution prior to reshock

• Zhang and Sohn (Padé) (1997):

$$\frac{da}{dt} = \frac{v_0}{1 + k a_0 \tau + \max\left[0, k^2 a_0^2 - \left(A^+\right)^2 + \frac{1}{2}\right] \tau^2}$$

• Vandenboomgaerde et al. (2002):

$$a(t) = a_0 + \frac{1}{k} \sum_{n=0}^{N} P_{2n+1}(A^+) \left(k a_0 \sigma t \right)^{2n+1}$$

$$\sigma = \frac{k[v]}{2} \left(A^+ + \frac{A^-}{1 - [v]/v_s} \right)$$

• Sadot et al. (1998):

$$\frac{da_{b,s}}{dt} = \frac{v_0(1+\tau)}{1+(1\pm A^+)\tau + \frac{3}{2}\frac{1\pm A^+}{1+A^+}\tau^2}$$
$$\frac{da}{dt} = \frac{1}{2} \left(\frac{da_b}{dt} + \frac{da_b}{dt}\right)$$

- Experimental data in best agreement with Sadot model
- Simulation data in best agreement with Zhang-Sohn (Padé) model

- Time-evolution of mass fraction isosurface in 3D
- Time-evolution of mass fraction in 2D

Mass fraction isosurface from high-order WENO simulation shows detailed structure before and following reshock

t = 3.5 ms

5

Mass fraction from 2D simulation shows more coherency and large-scale structure than in 3D

The mixing layer growth is in very good agreement with experimentally-measured growth rate following reshock

- Amplitude growth also in generally good agreement with Mikaelian reshock model h(t) = 0.28 A⁺ [u] t
- Amplitude growth prior to reshock overestimated
 - Limited resolution along shock propagation direction
 - Choice of initial perturbation (membrane break-up issues)
- 2D amplitude growth slightly slower than 3D growth before reshock, and significantly slower after reshock
- $da_{3D}/dt > da_{2D}/dt$

Mole fraction profiles exhibit more spatial structure in two dimensions than in three dimensions

Mixing profile and mixing parameter exhibit different spatial and temporal behavior in 2D and 3D

- $\Theta_{3D} > \Theta_{2D}$ so more overall mixing in 3D
- Θ_{3D} and Θ_{2D} differ qualitatively before and after reshock
- Both appear to asymptote to different
 values
 IWPCTM 7/04 13

Reshock amplifies the kinetic energy at all scales

- Late-time 2D spectrum somewhat steeper than k³
- Late-time 3D spectrum may have a $k^{5/3}$ large-scale spectrum, with dissipation dominating at intermediate and small scales

The 401 \times 257² WENO 5 simulation is too limited in resolution to exhibit a scaling subrange in the 3D kinetic energy spectrum at the mid-slice at *t* = 5 ms

compensated spectrum

Baroclinic production is the dominant enstrophy generation mechanism in 2D, while baroclinic production and vortex stretching are the dominant mechanisms in 3D

$$\frac{\partial \langle \Omega \rangle}{\partial t} = \left\langle \rho \omega_{j} \omega_{i} \frac{\partial v_{j}}{\partial x_{i}} \right\rangle + \left\langle \varepsilon_{ijk} \frac{\omega_{i}}{\rho} \frac{\partial \rho}{\partial x_{j}} \frac{\partial p}{\partial x_{k}} \right\rangle - \left\langle \frac{\partial}{\partial x_{j}} (\Omega v_{j}) \right\rangle - \left\langle 2\rho \Omega \frac{\partial v_{i}}{\partial x_{i}} \right\rangle$$

3D

baroclinic production

transport

dilatation

The buoyancy and Reynolds stress production are dominant mechanisms in 3D, and the pressuredilatation is also large

buoyancy production

High-resolution simulations provide flow structure, spectra, and statistics of reshocked, multi-mode Richtmyer-Meshkov instability

- Simulations of *Ma* = 1.5 Vetter-Sturtevant experiment before and after reshock showed dramatic differences in 2D and 3D
 - Mixing layer widths grow differently in 2D and 3D
 - Structure of mixing profiles and statistics change following reshock and are different in 2D and 3D
 - Energy spectra showed that fluctuations are significantly enhanced by vorticity deposition by second shock
 - Yet higher resolution needed in 3D to obtain scaling
 - Signature of reshock captured in evolution of kinetic energy and enstrophy; nature of fluctuations different in 2D and 3D
 - 2D and 3D simulations indicate that, following reshock in 3D, vortex stretching and baroclinic production are very important mechanisms
 - Reynolds stress and buoyancy production are dominant mechanisms in turbulent kinetic energy transport