

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Growth rate of mixing zone in a direct numerical simulation of Rayleigh-Tailor multimode instability development

Vladislav Rozanov¹, Roman Stepanov¹, Anton Nuzhny¹, Rafael Yakhin¹, Mikhail Anuchin², Yury Yanilkin³, Nadezhda Proncheva⁴, Nikolay Zmitrenko⁴

1. P.N. Lebedev Physical Institute of RAS, Moscow, Russia. rozanov@sci.lebedev.ru

2. Russian Federal Nuclear Center - All-Russia Scientific Research Institute of Technical Physics, Snezhinsk, Russia

3. Russian Federal Nuclear Center - All-Russia Scientific Research Institute of Experimental Physics, Sarov, Russia

4. Institute of Mathematical Modelling of RAS, Moscow, Russia

The research is supported by ISTC Project #1481

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Topics

- •Direct numerical simulation of RT&RM instabilities and mixing by codes NUT, MAX, EGAK;
- Comparison with experiments (S.Zaitsev);
- •Wavelet analysis;
- •Kohonen map for multi-dimensional space visualization;
- •Neuro-network forecasting of instabilities and mixing development (Predictor);
- •Mixing zone growth rate
- •Prospects

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Related reports on 9th IWCTM:

•The multiparametric statistical analysis of hydrodynamic instabilities, based on wavelet preprocessing and neuronetwork classification.

Anton Nuzhny et al; Friday, July 23, 9²⁰

•Statistical properties of 2D RT-induced mixing at nonlinear and transient stage for 6-mode ensemble.

Roman Stepanov et al; Tuesday, July 20, Poster 2

•General characteristics of a mixing zone development in a direct simulation of hydrodynamic instabilities with a random phase regular multimode perturbation.

Nikolay Zmitrenko et al; Monday, July 19, Poster 1

k

Cambridge, UK

9th International Workshop on the Physics of Compressible Turbulent Mixing **IWPCTM9** Cambridge, UK 19-23 July 2004

Problem statement ⁽¹⁾

iield

$$p = \frac{R}{\mu}\rho T$$
 $\varepsilon = \frac{1}{\gamma - 1}\frac{R}{\mu}T$

Position of the cor

$$i_{i} = \frac{2\pi}{\lambda_{i}} = \frac{2\pi}{L}i,$$
 $i = 2,3,5,7,11,13,17,19,23,29,31,37$

Density field – $\rho(x, z)$ Pressure field – P(x, z)Velocity components fields – u(x, z), w(x, z)Momentum components fields – $p_x(x,z), p_y(x,z)$ Vorticity field – $\Omega(x,z) = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}$ heavy

substance

light

substance

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

nbridge, OK 23 July 2004	Problem s	tatement ⁽²⁾	
Instabilities:	RT, RM, limited tir	ne of development	
Dimension:	2D and 3D		o const
Amplitudes:	$a_{k}^{0} = a_{0}(k)$	$\begin{cases} 1. a_k^{\circ} K = \text{const} \\ 2. a_k^{\circ} = \text{const} \end{cases}$	$\Rightarrow a_k^\circ = \frac{k}{k}$
Modes:	N _{max} =6,8,10,12;	i=2,3,5,7,11,13,1	7,19,23,29,31,37
Phases:	random choice on t	the interval $0 - 2\pi$	
Attwood numb	er: Ar/Xe A=0.532	; He/Xe A=0.94	H
Total number o	of simulations: 25	$\sum_{\substack{Z_{\text{max}} X_{\text{max}} \\ f = f}} u^2 + w^2$	
Physic values:	the kinetic energy: $\int_{x_{max}}^{z_{max}} \int_{x_{max}}^{x_{max}} \rho w dx dz \qquad : \ z$	$E_{k} = \int_{Z_{min}} \int_{X_{min}} \rho \frac{d^{2} + d^{2}}{2}$ z-component of a more	-dxdz nentum
the width of the	$e \min_{x_{\min}}^{Z_{\min}} zone:$	$\mathbf{L} = \mathbf{Z}_2 - \mathbf{Z}_1$	
$\int_{0}^{Z_{\text{max}}} \int_{0}^{X_{\text{max}}} C\rho$	dxdz : the mass	s of heavy fluids invol	ved into mixing
the enthropy:	Н	$=\frac{1}{2}\int_{-\infty}^{Z_{\text{max}}}\int_{-\infty}^{X_{\text{max}}}\Omega^{2}(\mathbf{x},\mathbf{z},\mathbf{t})\mathrm{dxdz}$	
Cambridge, UK		$- Z_{\min} X_{\min}$	Edited by S.B. Dalziel

IWPCTM

Edited by 3.3.5 alziel

9th International Workshop on the Physics of Compressible Turbulent Mixing **IWPCTM9** Cambridge, UK 19-23 July 2004

Density field evolution (He/Xe, n=6)

T=19

T=22

Comparison with experimental data on Ar-Xe

IWPCTM9

Comparison with experimental data on He-Xe

IWPCTM9

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Simulation examples⁽¹⁾ – RT

NUT He/Xe ak=0.5, n=6

MAX He/Xe n=6, a=const, n=10

July 2004

Edited by S.B. Dalziel

Cambridge, UK

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Simulation examples⁽²⁾ – RT

MAX Ar/Xe n=6, ak=0.8, n=10

MAX Ar/Xe n=6, a=const, n=10

Cambridge, UK

IWPCTM9

Edited by S.B. Dalziel

IWPCTM9

Simulation examples⁽⁴⁾ –RT, n=6,12

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Cambridge, UK

Edited by S.B. Dalziel

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Simulation examples⁽⁶⁾ –V(x,z,t), RT

Cambridge, UK

IWPCTM

Edited by S.B. Dalziel

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Integral values ⁽¹⁾

 $z(\mathbf{x},\mathbf{y}) = -\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}\cos(\mathbf{k}_{i}\mathbf{x} + \varphi_{i})\cos(\mathbf{q}_{j}\mathbf{y} + \psi_{j})$ j=1 i=1 $\frac{2\pi}{\gamma} = \frac{2\pi n_i}{L_x},$ $2\pi n_j$ 2π $\mathbf{q}_{\mathbf{j}} = \overline{\lambda}$ k_i $(n_i = 2, 3, 5, 7, 11, 13, ...)$ $a_{ij} = \frac{a_0}{\sqrt{k_i^2 + q_j^2}} = \frac{L}{2\pi} \frac{a_0}{\sqrt{n_i^2 + n_j^2}}$ $\begin{aligned} \mathbf{a}_{0} &= \mathbf{0.8}\,, \qquad \phi_{i} = \frac{2\pi \mathbf{m}_{i}}{8}\,, \qquad \psi_{j} = \frac{2\pi \mathbf{l}_{j}}{8}\\ \mathbf{m}_{i} &= \big\{\!4, 1, 5, 2, 7, 3\big\}, \qquad \mathbf{l}_{i} = \big\{\!6, 5, 5, 4, 1, 3\big\} \end{aligned}$

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

 $\rho = \sum c_i \psi_i$

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Wavelet-decomposition of density field

 $c_i = \int \rho \psi_i dx dz$

Cambridge, UK

IWPCTM

Edited by S.B. Dalziel

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Linear compression: Principal Components

 $\{c_1, c_2, ..., c_N\} \Rightarrow \{p_1, p_2, ..., p_N\} \Rightarrow \{p_1, p_2, ..., p_M\}, M \ll N$

Cambridge, UK

Edited by S.B. Dalziel

Reconstruction after data compression

Principal components numbers

IWPCTM

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Kohonen maps

Linear compression:

Non-linear compression:

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Map interpretation⁽¹⁾

PC₂: Configuration

Edited by S.B. Dalziel

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Map interpretation⁽²⁾ Processes similarity (He/Xe, n=6)

Cambridge, UK

Edited by S.B. Dalziel

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Predictor ⁽¹⁾

T=25

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Predictor ⁽²⁾

Cambridge, UK

Predictions

Edited by S.B. Dalziel

Interpretation of principal components⁽¹⁾

 $c_i = \rho \psi_i$

$$\vec{\overline{c}} \equiv \frac{1}{D} \sum_{\alpha=1}^{P} \vec{c}^{\alpha}, \quad \Sigma_{ij}^{C} \equiv \frac{1}{D-1} \sum_{\alpha=1}^{D} \left(c_{i}^{\alpha} - \overline{c}_{i} \right) \cdot \left(c_{j}^{\alpha} - \overline{c}_{j} \right)$$

D – number of density figures $\sum_{j} \Sigma_{ij}^{C} U_{jk} = \lambda U_{jk} \qquad pc_{i} = (c_{k} - \overline{c}_{k}) U_{ki}$ $pc_{i} = \rho \psi_{k} U_{ki} - \overline{c}_{k} U_{ki} \qquad \text{filter}_{i} = \psi_{k} U_{ki}$

IWPCTM9

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Interpretation of principal components⁽²⁾

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Interpretation of principal components⁽³⁾

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

The width of the mixing zone ⁽¹⁾

$$\begin{split} L_{i}(t) &= L_{0i} + \frac{\lambda_{i} \cdot f}{\alpha_{eff}} \cdot \left(\sqrt{1 + \frac{(\alpha_{eff} \cdot \gamma_{i} \cdot t)^{2}}{2\pi \cdot f}} - 1 \right) \\ \gamma_{i}^{2} &= \frac{2\pi}{\lambda_{i}} \cdot gA, \qquad f = \frac{\nu^{2}(A)}{A}, \qquad \alpha_{eff} = \alpha_{0} \cdot \alpha_{*} / (\alpha_{0} + \alpha_{*}), \\ V_{\lambda}^{asympt} &= \nu \cdot \sqrt{g \cdot \lambda}, \qquad k_{i} = \frac{2\pi}{\lambda}, \qquad \alpha_{0} = k_{i} \cdot a_{0i}, \\ L(t) &= \sum L_{i}(t) \cdot w_{i}(t), \qquad L(0) = \sum L_{i}(0) \cdot w_{i}(0), \\ w_{i}(0) &= \cos(k_{i} \cdot x_{max} + \phi_{i}) - \cos(k_{i} \cdot x_{min} + \phi_{i}), \\ w_{i}(t) &= w_{i}(0) \cdot e^{-\gamma_{KHi} \cdot t} \Rightarrow e^{-\gamma_{i} \cdot t/n_{i}} \Rightarrow e^{-(\gamma_{i} \cdot t/n_{i})^{2}}, \qquad \gamma_{KH} \sim \frac{\gamma_{i} \cdot a_{i}}{\lambda_{i}} \Rightarrow \frac{\gamma_{i}}{n} \end{split}$$

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 **IWPCTM9**

The width of the mixing zone ⁽²⁾

TF_R

TF_R

200

400

Cambridge, UK

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

The width of the mixing zone ⁽³⁾

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IVPCTM9

Conclusion ⁽¹⁾

From DNS

•Database created on the basis of 250 DNS on the development of instability and turbulent mixing of two gases for different regimes:

- RT and RM;
- 2D and 3D;
- different Atwood numbers;
- different mode numbers;
- different amplitudes on the mode number dependencies;

Database contains information on the pressure, velocity, density and enstrophy fields.

•The growth of mixing zone width is close to the linear one with time

•The width of the mixing zone does not depend strongly on the high mode contribution (The width slightly decreases with the inclusion of high modes)

•The width of the mixing zone for 3D and 2D cases for equal condition is approximately equal.

9th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge, UK 19-23 July 2004 IWPCTM9

Conclusion ⁽²⁾

From wavelet analysis

- Wavelet decomposition of density gives adequate representation of the instability and mixing development
- Kohonen maps can distinguish between different examples of the processes and can find similarity of the processes (if it really exists)
- interpretation of principal components of the wavelet space looks a very interesting investigation
- on this basis it is possible to suggest a predictor which can predict final results of instability and mixing development using the information on the initial state only.

Prospects

- 3D instabilities and turbulent mixing development, the wavelet analysis and so on.
- Wavelet analysis of other 2D fields (compare with the density) and their combination.