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What do we mean when we say Direct 
Numerical Simulation DNS?

We are resolving all the length scales in the problem.

• Energy bearing large scales

• Diffusive small scales

• Requires high-order accurate numerical methods (typically)

– E.g. spectral methods for incompressible flow

– High-order LES methods with Sub-grid scale models that can 
handle shocks and un- or under-resolved gradients

Not just solving Navier-Stokes equations.
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Question: What methods are best for 
computing compressible (turbulent) mixing?

Assuming computation of under-resolved flows 
(not DNS), essentially computing weak 
solutions.  No MILES issues addressed.

Defining the study goals in terms of scheme 
accuracy, efficiency and high-resolution.

Previous work leading to this study

Results that support our conclusions

The Answer (details not addressed today)
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Discontinuities are special: weak solutions 
have some important requirements*

The Lax-Wendroff theorem is one of the 
few rigorous theoretical results to rely upon,
• If the scheme is in conservation form then the 

solutions converge to a weak solution (not 
unique!),

• and if an entropy condition is satisfied the 
unique solution can be found.

Without conservation all bets are off!

*Lax & Wendroff, Comm. Pure Appl. Math., 13 1960. Also see
R.J. Leveque, Numerical Methods for Conservation Laws
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There is a corollary to these requirements

Some methods evolve internal energy or 
temperature (not a conservation law) in an 
attempt to keep a solution on the correct 
adiabat.

BUT in the presence of shocks all bets are 
off is you give up conservation.
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Discontinuities are special: first order 
accuracy is expected. 

For coupled systems (even linear) with 
discontinuities high-order accuracy is lost between 
characteristics emanating from the discontinuity*
• Several recent works have re-confirmed this result (Osher, Carpenter, 

Greenough & Rider)
• Can be overcome is very restrictive special cases‡

Generally with smooth data and a nonlinear system 
of hyperbolic conservation laws a discontinuity (i.e., 
shock) will eventually form
• Therefore the loss of accuracy is virtually inevitable!

*Majda & Osher, Comm. Pure Appl. Math., 30 1977.
‡Siklosi & Kriess, SIAM J. Num. Anal., 41, 2003.  
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A summary of Greenough & Rider’s* 
results on “off-the-shelf” methods
*Greenough & Rider, J. Comp. Phys. 196(1), 259-281, 2004.

WENO5 is more efficient for linear problems
PLM is more efficient than WENO5 (6X CPU) on all nonlinear problems 
(with embedded discontinuities).
The PLM advantage is unambiguous for Sod’s shock tube and the 
Interacting Blast Waves
WENO5 gives better answers for the Shu-Osher problem (fixed ∆x), but 
worse than PLM at fixed computational expense (fixed CPU cost).

Sod’s Shock Tube Interacting Blast Waves Shu-Osher Entropy Wave
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There are several working definitions for 
relative efficiency

Want to be able to quantitatively compare 
methods

• Determine the error (some norm and the “true”
solution”).

• Determine the cost to achieve that error (CPU time).

How much relative effort must be expended 
to compute a solution of a given accuracy?
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There are several working definitions for 
relative efficiency

A function of the cost of a solution on a given grid 
and the relative accuracy with same rate of 
convergence

• Where d=dimension, n=convergence rate, RE = 
Relative error with Error = Ahn

• Smaller is better
How much relative effort must be expended 

to compute a solution of a given accuracy?

 η = cost( )RE( ) d+1( ) n
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Greenough and Rider’s results in terms of 
measured efficiency. 

Gaussian Pulse linear advection
• WENO5 5th order accurate versus 2nd order 

accurate (1st order in L∞) for PLM, WENO5 will 
almost always win.

Sod’s Shock Tube
• PLM - 1.00, WENO5 - 22.8 

Interacting Blast Waves
• PLM - 1.00, WENO5 - 8.17

Shu-Osher shock entropy interaction
• PLM - 1.00, WENO5 - 2.77
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High-order efficiency: All problems show a 
saturation as order increases (5th-7th).
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Sod’s shock tube

Shu-Osher

Blast waves

The shaded box shows the 
“sweet spot” for efficiency.

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



LA-UR-04-4596

IWPCTM9, Cambridge July 20, 2004

We extract the best of each type of method 
and attempt to construct something “better”

The need for method nonlinearity is a consequence of 
Godunov’s theorem:
• A linear method cannot be second-order and monotone…

but a nonlinear method can be second-order and monotone.

Hybridize the nonlinear monotone/non-oscillatory methods
• Start with a nonlinear monotone method (e.g., PLM or PPM)
• If the solution is not monotone locally, then use the median of the 

high-order stencil, the monotone stencil, and a ENO/WENO stencil
• We denote the new methods by “xPLM” or “xPPM”, where “x” stands 

for “extreme”
Logically all things are created by a combination of 
simpler, less capable components

Let the older high-resolution methods constitute the 
“simpler, less capable” components!
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Methods we consider in this study.

Nonlinear Monotone - High-resolution Godunov-type
• PLM - Piecewise Linear MUSCL.
• PPM - Piecewise Parabolic MUSCL.

Non-Oscillatory - Does not degenerate to 1st order
• WENO - Weighted Essentially Non-Oscillatory -

Nth order (5th order WENO is very popular)

Nonlinear Monotone coupled to Non-Oscillatory via 
accuracy, monotonicity and extrema preserving limiters 
(i.e. combine Godunov-type and ENO/WENO)
• xPLM - Extreme Piecewise Linear Method*
• xPPM - Extreme Piecewise Parabolic Method*

*It could also be “Extended”.
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What’s the impact? Look at a smooth 
wave-breaking problem spectrally.

WENO5
xPPM

The new algorithms
lead to increased
fidelity and better
behavior where 
accuracy is lost.
These properties
equate to better
efficiency and 
improved physical 
modeling.

ExactAt ¾ of breaking time, analyze the 
computed solution spectrally and 
compare to the analytic solution.

WENO5
Deviates 
at k~8

xPPM
deviates
at k~18

xPPM dropoff 
Is smooth

Compare the 5th order weighted essentially non-oscillatory method (WENO5)
with our new extreme piecewise parabolic method (xPPM)
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Ideal shock/cylinder problem. The new 
methods are approximately 30 times more 
efficient in 2-D.

Our new methods improve efficiency dramatically!
(New methods 
are now 
implemented 
in LLNL AMR 
Code Raptor)

∆x=31.25µm 15.625µm 7.8125µm
1600x1600 3200x3200 6400x6400

Compressible Euler equations

Compressible Navier-Stokes equations

xPLM
1600x1600

∆x=31.25µm

∆x=31.25µm

The results on the
∆x=31.25µm
mesh are roughly 
equivalent to 
those found on
a ∆x=10µm 
mesh with the
older method.
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Mesh Convergence Study for all five 
methods.  xPPM is best, WENO5  is worst.

100x100   200x200    400x400

PLM PPM

WENO5

xPLM xPPM

Compare WENO5 at 400x400 
With xPPM at 100x100.  There 
is a factor of 500 difference in 
CPU time.

100x100   200x200    400x400
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Calculation Verification: mesh 
convergence for the shocked cylinder

Using the standard problem, idealized shock/cylinder, we ran 
three grids: 1002, 2002, 4002, and examined integral 
quantities.

Low-resolution xPPM
compares with 
high-resolution WENO
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What about 3-D? Use the Taylor-Green 
Vortex problem to test.  

The results are mostly the same, WENO is relatively 
inefficient compared with PLM/PPM.
• WENO is about one mesh resolution less resolved than 

PLM/PPM, 
• And two less than xPLM and xPPM

Shown below are entropy errors and relative CPU time.
T=2                          T=10 
Grid PLM PPM WENO xPLM xPPM PLM PPM WENO xPLM xPPM 
323 4.0e-

04 
1.5e-
04 

9.e-04 2.6e-
04 

5.0e-
04 

0.030 0.029 0.039 0.029 0.026 

643 4.4e-
05 

1.2e-
05 

7.4e-
05 

3.7e-
05 

7.0e-
06 

0.024 0.022 0.030 0.023 0.021 

CPU 1.00 0.93 17.00 1.30 1.45 15.35 14.21 261.0 19.93 22.22 
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What methods are best for computing 
compressible (turbulent) mixing?

Formal accuracy does not necessarily produce better 
of more efficient solutions.  High-order algorithmic 
elements do improve algorithmic efficiency.

Single step high-resolution Godunov methods faired 
best in all tests.
• PPM outperforms PLM in terms of efficiency.
• Accuracy and Extrema preserving limiters add additional 

resolution efficiently for test problems

Weighted ENO methods based on R-K integrators do 
not perform well in comparison to (x)PLM or (x)PPM.
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Algorithmic efficiency can significantly 
impact computational effort

1. Get a (significantly) bigger computer
– For our problems, solutions are converging at ~1st order
– Therefore, you need a factor of 2 per dimension (space and 

time): for time-dependent 3-D simulations this implies 16 
times more total effort (~8 w/AMR) and 8 times the memory
(~4 w/AMR) 

Y
ou

 m
us

t d
o 

al
lo

f t
he

se
! 

Goal: to decrease the numerical errors by 50%
There are basically three approaches:

“As machines become more powerful, the efficiency of 
algorithms grows more important, not less” - Nick Trefethen

3. Design a more accurate algorithm
– Verification can help guide such algorithm development and 

measure its impact

– You still have a problem, however, if the simulation 
will not fit in memory 

– Can we really make things an order of magnitude faster?

2. Make the existing algorithm more efficient
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BEGIN BACKUP SLIDES
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Examples of show how factors in algorithms 
and solutions effect the efficiency

Take n=2, d=3, R.E. = 1/2, cost = 2
• η=1/2

Take n=1, d=3, R.E. = 1/2 , cost = 2
• η =1/8

Take n=1/2, d=3, R.E. = 1/2 , cost = 2
• η =1/128

Take n=1/2, d=1, R.E. = 1/2 , cost = 2
• η =1/8
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An advantage of PPM: It asymptotically 
preserves limit solutions

If one looks at solutions where there is asymptotic structure, 
the truncation error can inhibit convergence, unless the small 
scale structure is resolved.  PLM does this! WENO5 does this!
• PPM: Continuous edge values as

Example 1 - Reaction system with a diffusive limit

Example 2 - Acoustics in the zero(low)-Mach limit

This may explain different structural character of PPM 
solutions

 ∆t → 0

 
∂tu+ ∂xv = 0;∂tv+ 1

ε2 ∂xu = - 1
ε2 v⇒∂tu

(0) −∂x
2u(0) = 0

 
∂tu+ ∂xv = 0;∂tv+ 1

ε2 ∂xu = 0;λ = ± 1
ε
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There is a handful of basic elements of 
dethod design

Weighted ENO Method
Entropy scheme (LLxF)

Flux Splitting

Base fluxes

High-order flux

Weights

Smoothness detector

Method-of-lines

High-Order Godunov

Riemann solver

Characteristic 
Projection

High-order differencing

Limiter

Time-centering
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Weighted ENO methods can have very high 
formal order of accuracy.

A nonlinear convex combination of schemes - 3-3rd order to a 5th 
order, 4-4th order to a 7th order…

Nonlinearity with smoothness detectors

L = −
1
h

f j+1 2 − f j−1 2( )

u(1) = un + ∆tL un( )
u(2) = 3

4 un + 1
4 u(1) + 1

4 ∆tL u(1)( )
un+1 = 1

3 un + 2
3 u(2) + 2

3∆tL u(2)( )

f u( ) = f − u( ) + f + u( ), f ± u( ) = 1
2 f u( ) ± αu( )

wk =
Ck

ISk + ε( )p
ωk =

wk
wm

m
∑

f j+1 2 = ωm
m
∑ f j+1 2,m

m
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5th Order WENO is the most commonly 
used form of this method.

Start with smoothness measures

3rd Order fluxes

Constants to give 5th order

f j+1 2,1 =
1
3 f j−2 − 7

6 f j−1 +
11
6 f j

f j+1 2,2 = − 1
6 f j−1 +

5
6 f j +

1
3 f j+1

f j+1 2,3 = 1
3 f j +

5
6 f j+1 −

1
6 f j+2

C1 =1,C2 = 6,C3 = 3

ISk = h2l−1 qk
(l)( )x j−1 2

x j+1 2
∫

l=1

r−1
∑

2
dx

IS1 =
13
12 f j−2 − 2 f j−1 + f j( )2 + 1

4 f j−2 − 4 f j−1 + 3 f j( )2

f j+1 2,HO = 1
30 f j−2 − 13

60 f j−1 +
47
60 f j +

9
20 f j+1 −

1
20 f j+2
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The PPM method is based on polynomial 
interpolation.

We find a parabolic interpolant

Where
  w x( )= p θ( )= p0 + p1θ + p2θ

2;θ = x − x j( )/∆x

  p0 = 3
2 w j - 1

4 w j−1 2 + w j+1 2( )
  p1 = w j+1 2 −w j−1 2

  p2 = 3 w j−1 2 + w j+1 2( )− 6w j
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In the original PPM the edges were found 
by a fourth-order formula

The edges simplify to the following

  
w j+1 2 =

7 w j + w j+1( )− w j−1 + w j+2( )
12
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Other high-order edge values can be used.

First compute the edge values: Sixth-order centered

Seventh-order upwind

Seventh-order parabolic

Six-point optimal stencil [0,3π/4]

  w j+1 2 =
37 w j + w j+1( )− 8 w j−1 + w j+2( )+ w j−2 + w j+3( )

60

  w j+1 2 = a w j + w j+1( )+ b w j−1 + w j+2( )+ c w j−2 + w j+3( )
a= 0.681056...;b=−0.229918...,c= 0.048816..

  w j+1 2 =
−3w j−3 + 25w j−2 − 101w j−1 + 319w j + 214w j+1 − 38w j+2 + 4w j+3

420

  w j+1 2 =
−111w j−3 + 849w j−2 − 3010w j−1 + 8510w j + 6645w j+1 − 1349w j+2 + 148w j+3

11520

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



LA-UR-04-4596

IWPCTM9, Cambridge July 20, 2004

In the original PPM the edges tested for their 
production of a monotone interpolant.

One follows this step with checking monotonicity
• Make sure that wj+1/2 is between wj and wj+1
• Next make sure the polynomial is monotone, the original expression 

is not clear, but this amounts to making sure that wj+1/2 is between wj
and 3wj -2wj-1/2

Our new method uses a bounding function, median(a,b,c) 
that returns the middle argument
• The one that is bounded by the other two
• If two arguments are O(hn) the median is too!
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Monotonicity

Standard montonticity can be implemented with two 
steps at each edge,

  w j±1 2 :=median w j ,w j±1 2,w j±1( )
  
w

j±1 2

M = w j±1 2 :=median w j ,w j±1 2,3w j − 2w j ∓1 2( )
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ENO or WENO values could just as 
easily be used.

Stencils are precomputed (like WENO) and selected 
hierarchically using the differences in between stencils to select 
the smoothest (first 2nd order, then 3rd, then 4th, ...)

WENO is like that in the literature, but not on fluxes.

 w j+1 2
2nd =

w j + w j+1( )
2 ;

3w j −w j−1( )
2

 

w j+1 2
3rd =

2w j−2 − 7w j−1 + 11w j( )
6 ;

−w j−1 + 5w j + 2w j+1( )
6 ;

2w j + 5w j+1 −w j+2( )
6
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Time-Centering

This is done using a time-integral form

Specifically it evaluates to 

 
w j+1 2

n+1 2 =
1
ν

p θ( )dθ
1 2

1 2−ν

∫

 
w j−1 2

n+1 2 =
1
−ν

p θ( )dθ
−1 2

−1 2−ν

∫

 w j+1 2
n+1 2 = p 1 2( )− ν

2 p1 + − ν
2 +

ν 2

3( )p2

 w j−1 2
n+1 2 = p −1 2( )− ν

2 p1 + ν
2 +

ν 2

3( )p2
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Finishing Up

Solve the Riemann problem to get single valued solutions 
and fluxes

Update the conserved variables
 U j+1 2

n+1 2 = riemann U j+1 2;−
n+1 2 ,U j+1 2;+

n+1 2( )

 U j
n+1 =U j

n − ∆t
∆x F U j+1 2

n+1 2( )−F U j−1 2
n+1 2( )( )

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



LA-UR-04-4596

IWPCTM9, Cambridge July 20, 2004

Scheme Stability & Truncation Error is 
exceptional

Using Fourier analysis: 
• All stable to CFL=1

Fourth-order edges
• Amplitude
• Phase

Sixth-order edges
• Amplitude
• Phase

Seventh-order edges
• Amplitude
• Phase

A ≈1+ − ν 2
24 + ν 3

12 − ν 4
24( )θ 4 +O θ 6( )

A ≈1+ − ν 2
24 + ν 3

12 − ν 4
24( )θ 4 +O θ 6( )

A ≈1+ ν
48 −

ν 2
16 + ν 3

12 − ν 4
24( )θ 4 +O θ 6( )

P ≈1+ − 1
30 + ν

12 − ν 3
12 + ν 4

30( )θ 4 +O θ 6( )

P ≈1+ − ν
60 + ν 2

15 − ν 3
12 + ν 4

30( )θ 4 +O θ 6( )

P ≈1+ 1
120 − ν

24 + ν 2

12 − ν 3
12 + ν 4

30( )θ 4 +O θ 6( )
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New algorithm development was motivated 
by the Greenough-Rider results.
Can we have the best of each type of method?

Hybridize the nonlinear monotone/non-oscillatory 
methods*
• Start with a nonlinear monotone method: high-order + 

monotonicity test
• If the flow is not monotone use the median of the original high-

order, monotone limiting value and an ENO/WENO value 
(new methods have an “x” designation in the following slides)

*Similar to Huynh, SIAM J. Num. Anal., 32 1995, 
Suresh & Huynh, J. Comp. Phys., 136 1997, 
Daru & Tenaud, J. Comp. Phys., 193, 2004
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Again quoting Dogbert:

Dogbert: “Logically all things are created by a 
combination of simpler, less capable components”

Now the simpler, less capable components 
are the older high-resolution methods
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