Experimental and computational investigations of shock-accelerated gas bubbles

D. Ranjan, J. Niederhaus, J. Oakley, M. Anderson, J. Greenough^{*}, R. Bonazza, L. Smith

Wisconsin Shock Tube Laboratory Fusion Technology Institute University of Wisconsin-Madison

*Lawrence Livermore National Laboratory AX- Division

MADISON

Wisconsin Shock Tube Laboratory University of Wisconsin-Madison

Overview

- Planar shock wave accelerates spherical soap bubble: Ar inside, N_2 outside, A_{init} =0.176
- Time evolution of geometrical properties
- Mach number effects $M = 2.88, u_p = 745 \text{ m/s}, A_{\text{shock}} = 0.00216$ $M = 3.38, u_p = 907 \text{ m/s}, A_{\text{shock}} = -0.0219$
- Laboratory and computational experiments
- Comparison with RAPTOR (2D and 3D model)

The Wisconsin shock tube

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

45.72 cm

Details of R-M experiment

Planar shock wave Spherical soap bubble D = 5 cmDriver: He Driven: N_2 Test: Ar

Initial conditions:

Post shock: Mie-scattering from the soap film acting as flow tracer 2 laser pulses 2 images per run on same frame

Formation of a ~5 cm diameter bubble and controlled release of bubble

Bubble free falls from injector stabilizing and a shock interacts with the bubble just out of view this view

Laser sheet intersects bubble in diametral plane after shock interaction

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

July 2004

Shock Accelerated Bubble M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Shock Accelerated Bubble M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

t =295 μs

July 2004

Shock Accelerated Bubble M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Shock Accelerated Bubble M#2.88

Shock Accelerated Bubble M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Computational experiments

- <u>Raptor code (LLNL)</u>
- Godunov-based PLM, with AMR
- 2-D axial symmetry; 3-D cartesian
- Grid:
 - 2-D: 3 AMR levels (4,4,2), $\Delta x_{min} = 0.078$ mm
 - 3-D: 2 AMR levels (4,4), $\Delta x_{min} = 0.195 \text{ mm}$
 - M = 2.88, 3.38
- ~5 cm dia. Ar bubble in N_2 initially at 98.274 kPa
- Film model: match film mass

Setup of 3-D problems and visualization:

- Shock propagates along the *y*-axis
- Bubble is centered at $(0, y_{center}, 0)$
- Results are viewed using 3 planar slices: one perpendicular to each axis, at a selected location on that axis.
- *x-y* and *z-y* plots are shown at z = 0 and x = 0 locations, respectively.
- *x-z* plots are shown at a *y* location selected to be near the main vortex ring (indicated by red line).

Wisconsin Shock Tube Laboratory

University of Wisconsin-Madison

July 2004

Cambridge, UK

July 2004

Cambridge 19-23 July, 2004 Cambridge, UK

Qualitative laboratory/computational comparison M#2.88

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Qualitative laboratory/computational comparison M#2.88

Wisconsin Shock Tube Laboratory University of Wisconsin-Madison

Geometrical features

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Vortex diameter growth rate

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK Wisconsin Shock Tube Laboratory University of Wisconsin-Madison Edited by S.B. Dalziel

Experiments vs. computations (H₂; M=2.88)

Height growth rate

Width growth rate

Conclusions

- Developed new bubble-release technique
- Used strong (M>2.5) shocks
- Observed bubble distortion, formation of vortex ring
- Measured growth rates of relevant large scale features
- $\tau = D/u_p$ appears to be appropriate time scale
- 3D simulation with film improved agreement to intermediate times
 - Improve 3-D model and computational diagnostics
- Develop "tomography" experiment
- Develop experiment to measure species concentration

University of Wisconsin-Madison

IWPCTM 9 Cambridge 19-23 July, 2004 Cambridge, UK

Julv 2004