Poster 2

Raevsky et al.

Numerical simulation of influence of turbulent mixing zone on local perturbation growth under Rayleigh-Taylor instability conditions

V.A. Raevsky, S.N. Sinitsyna, A.L. Stadnik & Yu.V. Yanilkin

RFNC-VNIIEF, Sarov, the Nizhniy Novgorod region postmaster@gdd.vniief.ru

It is known that in case of the turbulent mixing zone absence the self-similar local perturbation growth occurs according to the law

$$R_{l} \cong \beta \left(\frac{\rho_{h} - \rho_{l}}{\rho_{h} + \rho_{l}} \right) \cdot \frac{gt^{2}}{2},$$

and the growth constant β is approximately three times as much than the self-similar turbulent mixing zone growth constant α . According to two-dimensional and three-dimensional numerical simulations by Euler code EGAK it was revealed that when at initial time the local perturbation (R_{10}) and perturbations (R_{turb0}) determining turbulent mixing zone later on were existed at interface, the continuous continuum of self-similar solutions was realized, in which β is function of the relation R_{10}/R_{turb0} and $\alpha < \beta < N\alpha$ (N = 3and N = 6 according to the two-dimensional and three-dimensional cases). Thus the turbulent mixing zone does not absorb the local perturbation, but decrease the self-similar growth constant β depending on initial conditions.

The numerical simulation results agree with the jelly substance experiments.