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Introduction

Certain situations, e.g., Inertial Confinement Fu-
sion, involve high accelerations and compressibility
effects may become important at laboratory scales.
However, analysis of the role of intrinsic compress-
ibility of the turbulent fluctuations in the turbulent
stage of the Rayleigh-Taylor problem has not been
previously reported. Work has been done on the ef-
fect of compressibility on the initial linear stage1,
but our paper is concerned with the fully turbulent
stage. A priori, these compressibility effects could
appear if the speed of sound of the fluid is sufficiently
reduced (e.g., reducing the reference pressure of the
system), and this is the motivation for the present
study.

A general overview containing the latest results
on compressible turbulence can be found in Chas-
saing et al.2 In the case of free shear flows, there is
a strong intrinsic compressibility effect: the growth
rate of the shear layer thickness and the turbulence
levels are significantly reduced as the Mach num-
ber increases. The cause has been the subject of
much study in the past years3–8, leading to the fol-
lowing picture: the production term in the turbulent
kinetic energy equation reduces as a consequence of
the decrease in the pressure-strain correlation, which
diminishes the transfer of energy from the stream-
wise fluctuations to the cross-stream fluctuations. It
is reasonable, then, to formulate the same questions
for the Rayleigh-Taylor problem, where the input of
energy is essentially different.

Henceforth, compressibility will mean intrinsic
compressibility (density variations due to pressure
variations), whose level in the fluctuation fields is
determined by the turbulent Mach number,

Mt =
q

〈c〉 , (1)

where q =
√

2K, K being the turbulent kinetic en-
ergy and 〈c〉 the average speed of sound, all quanti-
ties varying across the mixing layer. The average of
any variable φ is written as 〈φ〉 and it is computed
as a plane average at a fixed inhomogeneous location
z. They denote Reynolds averages for quantities φ
per unit volume and Favre averages for quantities φ
per unit mass, unless otherwise stated.

Large-eddy simulation is used in this work, in par-
ticular, a dynamic mixed model is utilized, which

has already demonstrated to provide the temporal
evolution of the large-scale three-dimensional fields
with reasonable accuracy in different flows9. Details
about the formulation of the problem, as well as a
thorough discussion of the theoretical analysis and
results for different possible configurations can be
found in Mellado et al.10 Only one of those config-
urations in presented in this paper for the sake of
briefness, although the derived conclusions equally
apply to the other configurations.

Compressibility of the turbulence

We consider the hydrostatic equilibrium of a layer
of heavy fluid on top of a layer of lighter fluid. Both
fluids are treated as ideal gases, the local speed of
sound being then given by

c =

√

γ
R0T

W
=

√

γ
p

ρ
, (2)

where γ, the ratio of specific heats, lies in the range
1 < γ < 5/3.

With respect to the turbulent kinetic energy,
turbulent theory predicts and experiments confirm
that, in the incompressible limit, a self-similar state
is achieved after a sufficiently long time, in which

q0 = β
√

Agh (3)

is a characteristic scale of the turbulent velocity fluc-
tuations at each time. In this expression, Ag repre-
sents the constant external force per unit mass, with
A = (ρH − ρL)/(ρH + ρL) the Atwood number, and
h(t) the thickness of the increasing mixing depth.
The heavy fluid (top) is denoted by the subscript H
and the light fluid by the subscript L. The coefficient
β, of order 1, has to be provided by experimental
data.

In the compressible situation, in general, the ratio
of specific heats, γ, the Prandtl number and a char-
acteristic speed of sound, c0, appear as additional
parameters. There is no externally imposed velocity
scale so that the Mach number based on the local
velocity fluctuations, Mt, is the relevant one in this
problem. Thus, for a Prandtl number of order unity,
the situation considered here,

q0 = β(γ, Mt)
√

Agh . (4)

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



2

If Mt is large, intrinsic compressibility effects could
become important, in principle. However, the fact
that the motion of the fluids is determined by the
initial thermodynamic variables, namely, the zone
where the fluid on top has density larger than that
below, links the maximum of q0 over the time to
c0 such that Mt(t) is bounded from above. Hence,
Mt, which is small at early times because we start
from a steady configuration, might not become large
enough for intrinsic compressibility effects to be
strong; in particular, the evolution of the turbulent
kinetic energy could be well approximated by the
incompressible result, Eq. (3).
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FIG. 1: Profiles of the thermodynamic variables in a
two-layer system that is Rayleigh-Taylor unstable.

The two-layer configuration is shown in Fig. 1, the
ratio between the molecular weight W and the tem-
perature T of the mixture varying between two well-
defined levels, WL/TL at the bottom and WH/TH

(larger) at the top. The pressure, obtained from
the equation of state and the hydrostatic equilib-
rium condition, is

p(z) = p0 exp

(

− gWH

R0TH

∫ z

0

W (ζ)/WH

T (ζ)/TH

dζ

)

, (5)

p0 being the value at the middle plane, z = 0. The
two characteristic scales of the problem are

Li =
R0Ti

gWi

, i = L, H , (6)

the scale-heights11 of each layer.
A characteristic speed of sound c0 is required. The

average speed of sound, 〈c〉, varies along the inho-
mogeneous direction, being minimum in the denser
(top) fluid, according to the profiles of T/W and
Eq. (2). However, the maximum turbulent kinetic
energy is expected to be close to the center plane
(as it is shown later by the simulations), and, as the
two fluids mix, a reasonable choice for the charac-
teristic speed of sound is

c0 =

√

γ

2

(

LH

LL

+ 1

)

gLL , (7)

which has been obtained using the mean value
(TH/WH + TL/WL)/2 in Eq. (2) and the definitions
of Eq. (6).
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FIG. 2: Definition of the region, 2LT , that can partici-
pate in the turbulent Rayleigh-Taylor mixing.

In order to estimate q0, self-similar analysis can-
not be used because h is not the only scale of the
problem, and there is no available data in the liter-
ature (to the best of our knowledge) in order to es-
timate the evolution of the turbulent kinetic energy.
One possible approach is to calculate the available
potential energy of the system, since this constitutes
an upper limit to the kinetic energy released to the
flow. It is assumed that the turbulent stage devel-
ops over a length scale 2LT , as shown in Fig. 2. The
length LT includes all fluid heavier than the light
fluid at the interface, that is, from z = 0 up to the
point A in Fig. 2, where ρ = ρ−

0 . Mathematically,

LT = LH ln
LL

LH

= LH ln
ρ+

0

ρ−0
. (8)

This length scale LT is more relevant than LH in
this two-layer problem because it retains information
about the density jump at the interface. Then, the
depth-integrated available potential energy can be
shown to be10

Ep,max

mass
= φ(

ρ+

0

ρ−0
)gLL , (9)

where φ, function of the density jump at the center
plane ρ+

0
/ρ−

0
, has a maximum 0.10. The value q0,max

obtained from this estimate scales then with
√

gLL,
exactly the same as c0, Eq. (7), because LL ≥ LH .
Therefore, the ratio between q0,max and c0, the max-
imum turbulent Mach number over the time, is

Mt,max =
0.6√

γ
. (10)

To summarize, the major result of the theoretical
analysis presented in this section is that the turbu-
lent Mach number has an upper bound (independent
of the density ratio) and may not be large enough for
intrinsic compressibility effects to be important in
Rayleigh-Taylor turbulence. An assumption under-
lying the analysis is that the flow is fully turbulent.
In this respect, if a large scale perturbation O(LT )
in the two-layer configuration is imposed initially at
the interface, then there could be compressibility ef-
fects as a blob of pure fluid rises/falls into the oppo-
site pure fluid layer; that is not the case considered
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here. Another assumption is that of an ideal gas.
The fundamental cause of the limitation of Mt is
independent of this latter hypothesis, however, the
particular value of Mt,max found in the analysis de-
pends on the details of each particular equation of
state.

LES results

A two-layer configuration, shown in Fig. 1, is nu-
merically simulated for an isothermal case with a
density jump at the interface of 3 : 1. The equations
are solved in a rectangular domain 2LT × 2LT ×
11LT , where LT is given by Eq. (8). This size is
chosen such that the upper half of the domain spans
6 times this distance LT . The mesh is 128×128×704.
The initial perturbation of the interface is set follow-
ing Cook et al.12
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FIG. 3: Normalized mean density profiles at different
times t

p

Ag/LT : 0, 3.5 (hY /LT = 2),

6.9 (hY /LT = 4), 12.0 (hY /LT = 8).

Figure 3 presents the vertical profiles of the nor-
malized density at different times. In addition
to the initial distribution, the density variation at
t
√

Ag/LT equal to 3.5, 6.9 and 12.0 is plotted. The
mixing zone thickness hY , measured by the 1%-
points of the mean mass fraction profile, is also in-
dicated. That figure shows that the density jump at
z = 0 is rapidly reduced due to the mixing process
in a time that scales with

√

LT /(Ag), the instanta-
neous Atwood number decreasing with time. By the
time that the mixing region grows to hY /LT = 4 the
regions with static instability of the mean density
profile have practically disappeared, clearly observ-
ing that the mixing by Rayleigh-Taylor turbulence
is restricted to a central zone that scales with the
length LT , as assumed in the previous theoretical
analysis.

Figure 4 shows the temporal evolution of the tur-
bulent Mach number. Along with the value at

the center plane, the maximum value, which occurs
somewhat off-center toward the upper layer of fluid
where the speed of sound is lower, is also plotted.
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FIG. 4: Temporal evolution of the turbulent Mach num-
ber, Mt = q/〈c〉: at the center plane, maxi-
mum value.

The fact that the mean density evolves in a scale
of order LT as observed in Fig. 3 confirms the overall
available potential energy calculated in the theoret-
ical analysis. The speed of sound was estimated by
the center plane value and it is observed that Mt at
the center plane in the LES is less than the upper
bound found in the previous section, approximately
0.5, confirming the analysis. There is a displacement
of the maximum value of Mt toward the initially
heavy fluid side (upper layer), but the difference ob-
served in Fig. 4 is small enough for the theoretical
bounds to hold in general.

In order to further analyze the compressibility of
the flow, apart from looking at the turbulent Mach
number, it is also customary to split the density fluc-
tuation into an acoustic part and an entropic part,
one possible definition being2

ρ′ac = p′/〈c〉2
ρ′en = ρ′ − ρ′ac .

(11)

Here, since the flow is practically isothermal, the en-
tropic part originates from the composition fluctua-
tions. Results show that the major part of the fluc-
tuation corresponds to the entropic mode, the acous-
tic contribution being only 6% of the entropic one at
the center plane at t

√

Ag/LT = 3.5, which is char-
acteristic of a situation with low intrinsic compress-
ibility. At later times, this ratio slightly increases,
being 10% at t

√

Ag/LT = 6.9, which is still a small
value. Consistently, the pressure-dilatation term in
the transport equation for the turbulent kinetic en-
ergy is less than 10% of the buoyancy-production
term.
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Conclusions

Compressibility effects in Rayleigh-Taylor turbu-
lence with miscible fluids have been studied in a
two-layer system formed by a step-like distribution
of the ratio between molecular weight and temper-
ature. The density decreases exponentially with in-
creasing height in each layer. It has been shown ana-
lytically that the turbulent Mach number is bounded
from above, independently of the density jump at
the interface. The reason is that the initial thermo-
dynamic state of the system determines the amount
of potential energy per unit mass involved in the
turbulent mixing stage, and thus the level of turbu-
lent fluctuations that is achievable is linked to the
characteristic speed of sound such that the turbulent
Mach number is limited.

In the particular case considered here of an ideal
gas, this bound on the turbulent Mach number is
Mt,max ' 0.5. This value is small enough so that
compressibility effects may be relatively small. The
large-eddy simulations (LES), performed with a den-
sity jump at the interface of 3:1, indeed confirm that
the flow is not significantly affected by intrinsic com-
pressibility, showing that Mt does not exceed the
analytical bounds. We note that the Richtmyer-
Meshkov configuration, not studied here, can poten-
tially develop a higher turbulent Mach number, since
the initial velocity field is set independently of the
thermodynamic state.

The compressibility effects have been studied in

the LES decomposing the density fluctuation into
the entropic part, due to variation of composition,
and the acoustic part, due to intrinsic compressibil-
ity. This latter is found to be less than 10% of the to-
tal density fluctuation, indicating that intrinsic com-
pressibility effects are indeed small.

A constant-Atwood number configuration defined
by a step-like profile of the density itself, the pressure
decreasing linearly with height in each layer, has also
been considered. The reader is referred to Mellado
et al.10 for a thorough presentation. The conclusions
are the same as those obtained in the two-layer sys-
tem presented here, namely, small compressibility
effects, and key features such as the quadratic time
evolution of the mixing depth, the anisotropy of the
Reynolds stresses and the value of the mixing pa-
rameters compare well with those observed in the
incompressible cases reported in the literature.
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