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Trent Mattner Rayleigh-Taylor instability

Motivation
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• Dimensional analysis:

– No external length scales
– Infinite Reynolds/Peclet number

⇒ hB,S = fB,S

(
ρ2

ρ1

)
gt2 = αB,SA gt2

where A =
ρ2 − ρ1

ρ2 + ρ1

• For immiscible fluids, experiment (Dimonte &
Schneider, 2000) suggests:

– αS strongly dependent on A
– Atwood number effects most significant for
A & 1/2

• Difficult to attain self-similarity in direct
numerical simulation (DNS)
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Trent Mattner Rayleigh-Taylor instability

Large eddy simulation (LES) – equations of motion

• Favre-filter: f̃ ≡ ρf/ρ, f ≡
∫
G(x− x′)f(x′) dx′

• Filtered mole- and mass-fractions: X =
ρ− ρ1

ρ2 − ρ1
,

1
ρ

=
Ỹ

ρ2
+

1− Ỹ

ρ1

• Favre-filtered Navier-Stokes equations:

∂ρ

∂t
+
∂ρũj

∂xj
= 0

∂ρỸ

∂t
+
∂ρũjỸ

∂xj
=

∂

∂xj

(
ρD ∂Y

∂xj

)
− ∂ρqj
∂xj

∂ρũi

∂t
+
∂ρũiũj

∂xj
= − ∂p

∂xi
+
∂τ ij

∂xj
− ρgδi3 −

∂ρTij

∂xj
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Trent Mattner Rayleigh-Taylor instability

LES – modelled terms

• Compatibility between state, continuity, and scalar transport equations
demands

∂ũj

∂xj
= − ∂

∂xj

(
D
ρ

∂ρ

∂xj

)
−
(

1
ρ2
− 1
ρ1

)
∂ρqj
∂xj

• Apply stretched-vortex subgrid-scale (SGS) stress and mixing models (Misra &
Pullin 1997, Voekl & Pullin 2000, Pullin 2000)

Tij = K(δij − eiej)

qi = −1
2
∆K1/2(δij − eiej)

∂Ỹ

∂xj

where K ≡ subgrid kinetic energy, e ≡ subgrid vortex orientation, and ∆ ≡
local grid size

⇒ ∂ũj

∂xj
= − ∂

∂xj

(
D
ρ

∂ρ

∂xj

)
− ∂

∂xj

[
1
2
∆K1/2(δij − eiej)

1
ρ

∂ρ

∂xi

]
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LES – implementation

• Subgrid kinetic energy (Pullin 2000, stretched-spiral
Lundgren vortex)

K =
∫ ∞

kc

K0ε
2/3k−5/3 exp

(
−2k2ν

3|S3|

)
dk

where S3 = S̃ijeiej ≡ resolved strain along vortex axis

ϕ

ψn e

r

• K0ε
2/3 estimated from approximate expressions (Voekl & Pullin 2000) for the

resolved circle-averaged second-order structure function, F c
2 (r,x)

K0ε
2/3 =

πF c
2 (r,x)

2∆2/3
∫ 2π

0

∫ π

0
s−5/3

[
1− J0

(
s(r/∆)

√
1− sin2ψ cos2 φ

)]
dsdφ

where, in general, F2(r,x) = |u(x + r)− u(x)|2
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LES – implementation (cont’d)

• Subgrid vortex orientation, e

– fraction λ of subgrid vortices aligned with principal extensional eigenvector
of resolved rate-of-strain tensor, S̃ij (corresponding eigenvalue λ3 )

– 1− λ subgrid vortices aligned with resolved vorticity vector, ω (Misra &
Pullin 1997)

λ =
λ3

λ3 + ‖ω‖

• Explicit filters

– Circular spectral filter in (x, y)-plane
– Compact filter in z-direction
– Only damps wavenumbers above cutoff,
kc = π/∆

– Accounts for less than 10% of subgrid
dissipation
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Reference DNS – simulation details

z

y
x

H

L

• Boundary conditions:

– No-slip/penetration top and bottom walls
– Assume no mixed fluid reaches walls ⇒
X = 1 (top wall), X = 0 (bottom wall)

– Periodic in homogeneous (x-y) plane
– H/L = 32/13 ≈ 2.5

• Discretization:

– x-y plane: spectral (Fourier)
– z direction: 8th-order compact

finite-difference
– ∆z/∆xy = 8/13 to approximately match

resolution of spatial discretization schemes
– Grid size: 256× 256× 1024
– Temporal discretization: 3rd-order explicit

Adams-Bashforth-Moulton or Runge-Kutta
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DNS – simulation details (cont’d)
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• Definitions:

ρ ≡ ρ2 + ρ1

2
, L ≡ 2π`, U ≡

√
g`

• Initial conditions:

– X =
1
2

[
1 + erf

(
z + ζ(x, y)

5∆z

)]
– u = −D∇ρ/ρ

• Parameters:

Re ≡ ρU`

µ
, Pe ≡ U`

D
= Re Sc,

• Chosen such that:

– Same proportion of box used
– Same final flow Reynolds number,

Reh ≡
ρhḣ

µ

– Matched linear stability growth
rates, στ , where τ ≡

√
L/Ag
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LES-DNS comparison – growth
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• LES initialized using filtered DNS-data at t/τ = 0.5

– At this time, DNS data almost resolved on LES grid
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LES-DNS comparison – spectra

Kinetic energy
ρu2
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• Model preserves resolved scale features
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LES-DNS comparison – dissipation

Kinetic energy dissipation ε

z
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• Resolved-scale dissipation dominates

– Experiment (or higher Re DNS) required to test model validity
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LES – predictions at different density ratios

k L / 2π
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• Initial conditions:

– X =
1
2

[
1 + erf

(
z + ζ(x, y)

5∆z

)]
– u = −D∇ρ/ρ

• Parameters:

– A = 1/4, 1/2, 3/4
– H/L = 1.23
– Re = ρ1U`/µ = 11, 215
– Pe = U`/D = 11, 215
– Sc = µ/ρ1D = 1
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LES – visualizations

A = 1/4 A = 3/4
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LES – Mole-fraction profiles and Reynolds number
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• LES predicts approximately self-similar behavior

– Bubble/spike penetrations grow by a factor of 8
– Reh > 50, 000
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LES – growth

(t / τ)2

h B
/L

,h
S

/L

0 5 10 15

-0.4

-0.2

0

0.2

0.4

• LES predicts approximately self-similar behavior

– Approximately quadratic growth
– Only weak Atwood number effects
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LES – model dissipation

Kinetic energy dissipation ε
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• Subgrid-scale dissipation dominates
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LES – subgrid kinetic energy

t / τ
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LES – spectra
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• Kinetic energy spectrum approximately asymptotes to Kolmogorov -5/3 slope

• Scalar energy spectrum decays faster than -5/3
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LES – scalar excursions

X = −0.01, 1.01 X = −0.02, 1.02

• ‘Unphysical’ scalar excursions:

– Occupy small volume fraction
– Average out in statistics

– More serious at high density ratio, e.g.,
ρ

ρ1
=

∆ρ
ρ1
X + 1
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Conclusions

• Used subgrid vortex model to simulate Rayleigh-Taylor instability

• DNS–LES comparison:

– Model preserves resolved scales
– Higher Re experiment or DNS required to definitively test model

• Encouraging behaviour observed:

– Self-similar mole-fraction profiles
– Approximately quadratic growth
– Approximate -5/3 slope in resolved kinetic energy spectra

• Scalar excursions are an outstanding issue for very high density ratio
simulations
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LES – initial conditions

(t / τ)2
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• For broad spectrum initial conditions, LES predicts

– Faster growth
– Flow not self-similar
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LES – Subgrid scalar energy estimate

k l
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• Assume:

EX(k) = βε−1/3εXk
−5/3

• βε−1/3εX computing using analogous
expressions for the second-order scalar
structure function

• Subgrid variance:

X2 −X
2

=
3
2
βε−1/3εXk

−2/3
c
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LES – Youngs molecular mixing fraction
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LES – dynamic scalar-flux model

• Model originally contains a
parameter, γ, which is estimated
statically

qi = −γ
2
∆K1/2(δij − eiej)

∂Ỹ

∂xj

• Also possible to estimate γ
dynamically
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