
Volume fraction pro�les of transport structures
in Rayleigh-Taylor turbulent mixing zone:
evidence of enhanced di�usion processes

Antoine Llor1, Pascal Bailly2 & Olivier Poujade2

1. CEA/Siège, 31-33, rue de la Fédération, 75752 Paris Cedex 15, France,
antoine.llor@cea.fr

2. CEA/DAM, BP12, 91680 Bruyères le Châtel, France,
pascal.bailly@cea.fr, olivier.poujade@cea.fr1

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



I. Motivations: 2SFK modeling
A Two-Structure Two-Fluid Two-Turbulence (2SFK) model
was �rst presented in 2001 by A. Llor & P. Bailly at the 8th
IWPCTM in Pasadena, which:

◦ had all the basic physics deemed important,
◦ but was obtained

by assembling separate independent elements,
◦ and involved

an empirical enhanced di�usion for stability.

Today, our new version of 2SFK:

◦ has the same basic physics,
◦ follows from a uni�ed derivation

(least action principle
and extended thermodynamics of irreversible processes,
see other presentation by A. Llor, P. Bailly & O. Poujade),

◦ and still involves enhanced di�usion which is
here shown to be a general feature

of any Two-Structure Two-Fluid (2SF) model.

Well-known example of 2SF model other than 2SFK:
Youngs' model (1995).
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II. Basic mass transport equations
in two-structure two-�uid models

Most models of Rayleigh�Taylor turbulent mixing
involve:
i) light − and heavy +

structures as basic trans-
port entities,
ii) made of mixed or
entrained light 1 and
heavy 2 �uids.

 + : 2 

 – : 1 

 + : 2+1 

 – : 1+2 

Examples: Youngs', Bubble models, Dimonte's, Dalziel's...
and 2SFK.

Mass conservation equations gives transport (1D):

D±t α±ρ±cm± = −Φm±
x,x ∓Ψm,

D±
t a = ∂ta + (aU±

x ),x,

U±
x = velocity of structure ±,

α± = volume fraction of structure ±,

ρ± = density of structure ±,

cm± = mass fraction of �uid m in structure ±,

Φm±
x = �ux of �uid m in structure ± (Φ2±

x + Φ1±
x = 0),

Ψm = exchange of �uid m between structures ±.

3

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



Assuming incompressibility:

D±t αm± = −
(
Φm±

x

ρm

)

,x

∓ Ψm

ρm
.

αm± = volume fraction of �uid m of structure ±,

ρm = density of �uid m (constant),
αm±ρm = α±ρ±cm±.

�Solve� these equations using
experimental data and basic assumptions:

◦ At → 0, zero Atwood limit,
◦ L(t) = 2αAtgt2, 2α ≈ .08

TMZ width self-similar growth, ξ = x/L,
◦ αm(ξ) = αm+ + αm−,

self-similar �uid fraction pro�les (linear),
◦ Θ ≈ .8 ≈ 6〈 α2+α1+

α2++α1+ + α2−α1−

α2−+α1−〉, molecular mixing ratio,
◦ Φm±

x = −D±(ξ)(LL′)× α±(ρ1ρ2/ρ±) (αm±/α±),x,
usual ��rst gradient� closure, D± ≥ 0,

◦ Ψm = C(ξ) (L′/L)× α+α−ρm(αm+ − αm−),
��rst gradient� closure, C ≥ 0,

◦ αm±, assumed pro�les,
simplest consistent with previous constraints.

◦ C(ξ) = C, uniform exchange rate.

4 equations with αm± given
↓

4 unknown pro�les (U±x , D±) and 1 constant (C)
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III. Characteristic volume fraction pro�les

Algebraically-simplest density pro�les of structures
of zero slope with pure �uids at TMZ edges,
and adjusted by pole at ξ0 for mixing level:

ρ+ − ρ2

ρ2 − ρ1
= − (1/2 − ξ)2

ξ0 +1/2 − ξ
,

ρ− − ρ1

ρ2 − ρ1
=

(1/2 + ξ)2

ξ0 +1/2 + ξ
.

0 +1�2

1�2

1

Fluid volume fractions:
α2 =1/2 + ξ,

α1 =1/2 − ξ.

0 +1�2

1�2

1

α2+ = (1/2 + ξ)
ξ0 +1/4 − ξ2

ξ0 +1/2 − 2ξ2
,

α2− = (1/2 + ξ)
1/4 − ξ2

ξ0 +1/2 − 2ξ2
,

α1+ = (1/2 − ξ)
1/4 − ξ2

ξ0 +1/2 − 2ξ2
,

α1− = (1/2 − ξ)
ξ0 +1/4 − ξ2

ξ0 +1/2 − 2ξ2
.

0 +1�2

1�2

1

Structure volume fractions:

α± = (1/2 ± ξ)
ξ0 +1/2 ∓ ξ

ξ0 +1/2 − 2ξ2
.

0 +1�2

1�2

1

Θ = .8 obtained at ξ0 ≈ .38 (thick lines).
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IV. Solution of mass transport equations

With αm± as above, solutions given by simple quadra-
tures of algebraic functions, most conveniently com-
puted numerically and not explicited here.
Limit conditions on αm± and Φm±

x give:

C =

∫ +1/2
−1/2

ξα2+
,ξ dξ

∫ +1/2
−1/2

α+α−(α2+ − α2−)dξ
≈ 2.

Scaled di�usion coe�cients
D+ (solid) and D− (dashed)
almost identical.

D±(0) ≈ .0914.
0 +1�2

.05

.1

Scaled structure velocities
U+/L′ (solid) and U−/L′ (dashed)
with nearly constant drift (thick):

δUx = U+
x − U−

x ,

and ≈ 1/4 di�usive contribution
(thick dashed):

δU◦
x = −D+(α+ρ+),x

α+ρ+
+ D−(α−ρ−),x

α−ρ−
.

0 +1�2

-.5

-.25

+.25

+.5

Structure directed energy larger than �uid directed energy:
∫

α+α−
(δUx)2

2
dξ ≈ 1.19×

∫
α2α1(U

2
x − U1

x )2

2
dξ = 1.19×(L′)2

48
.
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V. General properties of solutions

Basic properties do not depend on:
◦ αm± pro�le details (if Θ preserved),
◦ C(ξ) non uniformity (up to factor ≈ 2).

More speci�cally:
◦ D±(ξ) 6= 0 at ξ 6= 0 if Θ 6= 0

(otherwise ∃ξ such that C(ξ) < 0),
◦ D±(±1/2) = 0

(otherwise (α2+/α+),x 6= 0 at ξ = +1/2),
◦ C(ξ) ≈ 2 ,
◦ D± bell shaped, D±(0) ≈ .1 ,
◦ δUx(ξ)/L′ ≈ .5,
◦ Structure directed energy

≈ 20% higher than �uid directed energy.
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VI. Consistency of D± and C
with usual k�ε estimates

Observationnal data (α-group)
on self-similar Rayleigh-Taylor TMZ:

◦ TMZ growth coe�cient α ≈ .04 (L = 2αAtgt2),
◦ reduced potential energy KI

(L′)2
≈ 1

96α= .26,

◦ �uid directed/potential energy ratio KD

KI
≈ 2α,

◦ kinetic/potential energy ratio KT

KI
≈ .48,

(consistent selection of α and KT/KI values).

Energy balance d
dt

(LKI)=
d
dt

(LKT )+LE, yields E.

Then standard k�ε closures of rate and di�usion:

Ct =
E

KT
× L

L′
= 2

(
KI

KT
− 1

)
,

Dt(0) =
3

2

Cµ

σc

K2
T

E
× 1

LL′
=

3

4

Cµ

σc

KT

(L′)2

(
KI

KT
− 1

)−1

,

and with observed ratios and Cµ/σc ≈ .09/.7:

Ct≈ 1.04× C,

Dt(0)≈ .111×D(0).

Exchange rate correctly captured by k�ε approach,
di�usion underestimated by an order of magnitude!
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VII. Energy budget analysis of RT TMZ
in adapted k�ε approach

Question: are velocity �uctuations responsible for
enhanced D± associated with new speci�c turbu-
lent energy reservoir?

Simple model adapted from k�ε (similar to 2SFK)
where large-scale non-turbulent energies (KD, added
mass...) are not mirrored in E:

d
dt

(LKI) = LΠI ,

d
dt

(LKDA) = LΠI − LΠ,

d
dt

(LK) = LΠ− LE,

d
dt

(LE) = LCε1
E

K
Π− LCε2

E2

K
,

(ΠI and Π = gravity and drag works).

Under self similar RT growth, yields:
KDA

KI
= Cε

KT

KI
− Cε + 1, where Cε =

4Cε2 − 3

4Cε1 − 3
,

≈ .118 for KT/KI as above, Cε2 ≈ 1.92, Cε1 ≈ 1.44.

Observed: KDA/KI = 1.2× 1.5× (KD/KI)≈ .144
with corrections for structure/�uid and added mass.

No signi�cant energy reservoir other than directed
and added mass is expected to be associated with
enhanced di�usion.
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VIII. Modeling and experiment suggestions
Possible consistent di�usion process:

sifting di�usion or
�Pachinko� e�ect between
opposite �owing structures.

Consistent closure:

D± = D = 4Csα
+α−λ‖δ~U‖,

where λ is characteristic structure size and Cs ≈ 1.
λ ≈ L/5 in RT (α-group).

May stabilize models by making them parabolic.

Observationnal con�rmation of enhanced di�usion
could be achieved despite lack of structure deter-
mination methods:

Fluid 2

Fluid 1

RT TMZ RT TMZ

Initial state Standard Consistent
k�ε di�usion enhanced di�usion

Ultimately, structure analysis techniques will pro-
vide global insight (not only on di�usion).

10

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel


