Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing

Visualization of Rayleigh-Taylor instability

Wayne Kraft, Arindam Banerjee, Praveen Ramaprabhu, Malcolm Andrews **Department of Mechanical Engineering** Texas A&M University, College Station, TX 77845 Tel: (979) 847 8843; e-mail: mandrews@mengr.tamu.edu

July 2004

IWPCTM9, Cambridge, UK 19-23 July 2004

1. Rayleigh-Taylor Instability: Background

- Rayleigh-Taylor instability (R-T) occurs when a density gradient is accelerated by a pressure gradient such that $\nabla p \bullet \nabla \rho < 0$
- When a heavy fluid rests above a light fluid under the influence of gravity, the density interface is unstable to infinitesimal perturbations.
- The resulting flow evolves in three stages: Exponential growth of infinitesimal perturbations Nonlinear saturation of perturbations
 - Transition to turbulence and self-similar growth
- RT flows occur in the ejecta of supernovae, in atmospheric flows, and in the ablation CE CEROR interface of Inertial Confinement Fusion capsules.

2. Schematic of the Texas A&M Water R-T experiment

4. PIV-S

- · PIV-Scalar (PIV-S), a variant of conventional PIV, was developed to simultaneously measure density and velocity fields in an R-T mix.
- · Different concentrations of seed particles used in light and heavy fluid streams to mark density differences.
- · Density measurements show good agreement in the mean and rms with thermocouple data

Consecutive grayscale images (a), separated by $\Delta t = 0.033$ s, of seed particles are cross-correlated to yield a velocity vector field (b). The corresponding out-of-plane component of vorticity (c) shows regions of positive and negative vorticity concentrated within the R-T rollup. Density information may be obtained from (a) through local window averages of particle concentration

5. PIV-S : Visualization using seed particles

(x = 35 cm)

(c)

222222

to time through the Taylor hypothesis.

6. Velocity Spectra from PIV

35 cm (obtained from PIV) show the vertical velocity component dominating over horizontal velocity fluctuations. A developing inertial range (k-5/3) and a dissipative range (k-3) at the high-wavenumber end is visible.

7. Planar Laser Induced Fluorescence (PLIF)

- · PLIF relies on the fluorescence properties of dye
- markers for visualization.
- · High-speed, high-resolution, non-intrusive, visualization technique
- · Rhodamine 6G used as dye marker.
- · 2-D measurements of scalar quantities

At late time, complex vortical structures show streaks of heavier fluid trapped fully inside the light fluid. This can only occur if there is significant three-dimensionality that results in out-of plane fluid being entrained in to the plane of visualization. Single-wavelength perturbations have interacted and paired into larger scales. The nonlinearity is evident here from the presence of a wide range of scales not seen close to the splitter plate. The bubbles (light fluid penetrating in to heavy) are traveling upward with a terminal velocity. These mushroom-shaped structures are typical of R-T mixing layers. These figures also show many secondary roll-up processes, especially on the large inverted mushroom, slightly left of the vertical centerline. Often these secondary roll-ups are driven by shear resulting in a localized Kelvin-Helmholtz instability.

8. High Atwood Number He/Air Gas Channel

9. Design Parameters

• $0 \le At \le 0.75$ ·Air/Helium (gases at room temperature). · Statistically steady · Lewis # ~ 1 (ratio of thermal & mass diffusion). · Heat air & use temperature as fluid marker.

10. Early Results

11. Acknowledgements

This work was supported by the Department of Energy as part of the High Energy Density Science Grant Program under contract numbers DE-FG03-99DP00276/A000 and DE-FG03-02NA00060.

10 cm

Figure shows a snapshot of the experiment, with nigrosine dye added to the cold water stream. The evolution of the mix is quadratic in x (downstream coordinate), with the mix width depending on the Atwood number (A_t) , and the acceleration due to gravity. In this experiment, the distance downstream can be related