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What Is Rayleigh-Taylor Mixing?

Heavy Heavy
£ U ZN 2=
k Q\\ 2%
Light | \\LI ht \
\\\\\\k \\\\\\ |
Linear growth Non-linear growth  Turbulent mixing

Main non-dimensional number: Atwood: At=(p,—p,)/(p;+p,)
Interface is unstable if: VpeVp <0

.. : . 1
Baroclinic generation of vorticity: —-VpxVp
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Applications

logy:

e Degradation of ICF capsules (10-12s).
e Formation of oil trapping salt domes (10%°s).

e Counter-gradient transport in engine cylinders with swirl.
e Modulation of heat transfer with twisted tapes in tubes.

e Atmospheric temperature inversions (clear air turbulence).
e Multi-phase mixing - drop disintegration.

e Super-Nova Remnants (SN1987A).
e g-Jitter - Bridgman crystal growth.

HST - WFPC2
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Overview

Rayleigh-Taylor mix experiments are difficult!

Modern turbulent mix models involve statistical quantities
and demand extensive experimental data sets for validation.

Transient Rayleigh-Taylor experiments do not lend
themselves to statistical data collection.

Over the past 8 years we have developed a statistically steady
R-T experiment that facilitates statistical data collection.

Our Rayleigh-Taylor mix data is used to validate models for
the description and understanding of hydrodynamic
Instabilities that develop during the implosion phase of ICF

capsules.
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Previous Experiments

Read (1980) - Rocket Rig (0<At1).

Andrews (PhD, 1986) - Overturning tank (0<At<0.05).
Redondo & Linden, Dalziel (1989) - Sliding plate (0<At<0.05).
Dimonte (1992) - LEM (0<AtL]).

Kucherenko (1991) - High acceleration (0<At<1).
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Previous Experiments cont.

Ken Read (1980)
The “Rocket Rig”

Aldermaston, UK.
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Previous Experiments cont.

A
.'

1 A

Rocket rig

() t=258ms, X=172mm (d) t-=30.8ms, X=241mm

y gﬁl'ﬁ\"'ii‘#]ﬁ ki
“ ]

(e) t=40.8 ms, X = 406 mm (f) t=458ms, X =508 mm

FIGURE 10. EXPERIMENT 29, ALCOHOL/AIR, 3D TANK!
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Previous Experiments cont.

Andrews, PhD (1986).
The “2-D Turning Tank”.
Imperial College, UK.

Tank size: 25cm x 36¢cm x 0.5¢cm

Malcolm Andrews 8/46

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

i i 1
Previous Experiments cont.

2-D Turning Tank - Tilted-rig
Tilt angle =55’
p,=1.1 g/lcm? (brine)
p,=1.0 g/cm3 (water)
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R-T Water Channel

_M_
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Experimental Details AT
Hot Cold
Water Water
| |
v v
< ‘ ’ 1.0m >
0.2
— Image T
= Azst 10.5cm Hort.
= bl x 8cm Vert. 0.3m
= 0.017 cm/pix l
PIV particle o
concentration: e E-type thermocouples
3mL/2000 L ) Nickel-Chromium and Constantan
Junction diameter of 0.01-0.02 cm
< Response time 0.001 s/°C
Camera _ Acquisition rate 8 kHz.
640H x 480V Pixels
1200 Image Capacity . Lasers
on Board Two 120 mJ
15 Hz pulse
Sample rate: 30/sec.
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R-T Water Channel

o Statistically steady.

 Density difference by hot/cold water thermal expansion.
e Small Atwood numbers (20°C): 0<At<0.01.

e Time is x/U, (parabolic flow).

* Long collection times (up to 15 minutes).

o Symmetric mix (bubbles and spikes same).

* Good diagnostics available.
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Photograph from
Experiment

35 ¢cm downstream
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At# =103

AT =5°C

U, =4 cm/s
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Video of Experiment
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Mechanisms

Initial linear 1 _ C.x |Agh
saturation, A u o
C_~0.7 0

Quadratic ()(Agxz
self-similar h, = :
growth U'O

o="Universal” growth constant ~ 0.07 (debatable)
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Summary of Data
Collected

At Atwood numbers of 103 and 5x104:

Density profiles across mix; width quadratic growth rate, o,

Ensemble averaged measurements of turbulence R-T
mixing correlations:

p’Z,U'Z,V’Z,U'V,,and prur’plvr
Turbulence density fluctuation energy spectra.

Molecular mix fraction, 0

Anisotropy tensor, energy dissipation.
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Parameter Definitions

L — 1
B, =TLw;£(p—p)2dt/Ap2 —m—o
B, :F(l_i): fl(l_ fl) 0 =
p e 0=Pm) 2
(pmax_pmin) £ n T
20t /= -
B,(w,) = N Z (o, *)'e*Aent
i=0
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Mean Density Profiles

2.4 cm downstream 30 cm downstream
1.00 | 100 -+
0.80 f (2a) 0.80 f (2b)
— 060 __ 060
P 1 Width=2w — | 0 >

T T «— Width
040 T |7 0.40 +
0.20 | / 0.20 |

0.00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.00 ;%’—\ T T T T T T T T T T T T T T 1
-05 -04 -03 -0.2 -0.1 00 0.1 0.2 0.3 04 05 9-8-76-5-4-3-2-101234567829

y (cm) y (cm)

Mean density profile taken with thermocouple
measurements, and showing error bars.
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Mix Width Development
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Measurement of o

a =0.07

J(At g)Ww U—XO
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Density Fluctuation o
Power Spectra

2.4 cm downstream 30 cm downstream
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More Power Spectra AT
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Photographs Vorticity
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Photographs overlaid with vorticity
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Density Fluctuations AT

o B, from Thermocouple
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Molecular Mixing
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Density/Velocity Correlations 4
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Velocity Fluctuations AT
(35 cm)
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Anisotropy Tensor ATM
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Energy Dissipation ATM

PE. :_[owpstepz dz = _[ovzv,olgz dz+jvtvngz dz
PEf :Iowpmeasured ZdZ - ipigziAz
i=0

PE eases = PE; — PE,

released

where, p,..ureq 1S the measured density, and pg,, is the step-profile of density at the
interface corresponding to the initial condition

w
1 12
KE. = 0 KEgenerated _EJ.O PV dz
where, W = mix width, v’=rms velocity

Dissipation, D= I:)Ereleased - KEgenerated

D

=0.49
PEreleased
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Velocity vectors from PIV
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V-velocity Wavenumber spectra

X = 35cm, A=0.00075

° 6cm x 4cm (V)
° 3cm x 2cm (V)
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Wavenumber, k
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U-velocity Wavenumber Spectra
X =35cm, A =0.00075
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U- and V- velocity Wavenumber AlM
Spectra
X = 35cm, A = 0.00075
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3-D MILES Simulations

CFD code called 3D-RTI from Andrews.
Transient 3-D VOF method.

o Euler, incompressible (MILES).

e 3rd order Van-Leer limiters used to prevent
non-physical oscillations (momentum and
volume fractions).

 Initial velocity field set by velocity potential.
e nNX*ny*nz: 96:48:96
o X*Y*Z:30cm:15¢cm:30cm
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3-D MILES Simulations
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A New High At Experiment

(under construction with funding from the DOE)

e 0<At<0.75

*Air/Helium (gases at room temperature).

o Statistically steady.

e Lewis # ~ 1 (ratio of thermal & mass diffusion).

» Heat air & use temperature as fluid marker.
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Schematic of New TAMU ™
High At Experiment

Side View
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Photograph of facility

Exit plenum Splitter plate Meshes
\ Flow
UG Research straightener
Asst. (fttall)
/ e Inlet

ducting

Flow channel

Fans

Figure 2. Air/Helium Facility as of December 8, 2003.
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Photograph from facility
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Current & Future Work

o Effect of initial conditions and coupling to CFD (LLNL).
e Buoyancy driven wakes (DOE).

 Gas channel (DOE).

e CFD Simulation & modeling - RM (Jacobs @ Arizona).
e 3-D MILES of RT mixing (LANL).

* Environmental and Naval applications.
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Buoyant Wakes
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Buoyant Wakes

Stable Fi= 7 (A =-5E-04)
Unstable Fi? = -7 (A = 5E-04)
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Properties

Properties at 20°C Water Air Helium

Density (kg/m3) 998.0 1.19 0.166

Viscosity (N s/m?) 1.003 E-3 1.80 E-5 1.97 E-5

Kinematic viscosity (m?/s) 1.005 E-6 1.51 E-5 1.19 E-4

Prandtl # 7.0 0.7 0.7

Schmidt # 600 (H,O/NaCl) 0.22 to 1.73 (varies across mix)
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Key Design Considerations

« Keeping the flow parabolic so that the Taylor hypothesis
may be used to relate time and space as t = x/U, where U is
the channel flow speed and x the distance downstream.

e The maximum Reynolds number for the mix.

e The cost of helium, which is related to the x-sectional area
and the flow speed U.

e How to measure the instantaneous density.
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Parabolic Flow

h, =0.07Atgt? or h, =0.07Atg(x/U)’

Parabolic if: h, /U < tan(15°) ~ 0.25

Setting At=0.75, hy ,,,=0.3 mat X,,,,=1 m, gives U ~ 1.0 m/s

max

Malcolm Andrews 52/46

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Cambridge, UK

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

AM
Max Re

Re — hbhb

v

centerline

Setting At=0.75, h, ...=0.3 mat x_..=1 m, gives:

b,max max

Cold/Hot water: Re,...=700

max

Air/Helium: Re _..=2400

max
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Cost of He

Cost of He ~ $4/m3

Setting U= 1m/s, X-section area=0.3*0.4=0.12 m?
Gives the max volume flow rate of 0.12 m3/s
Allow 20 flow lengths (1 m) gives 2.4 m3/expt.
Filling channel ~ 2.6 m3

Total volume/expt. = 5m3. Cost/expt. = $20
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Measuring Density

 Density measurement is the problem with two-component
gases.

 But in gases the thermal and mass diffusivities are close.

» S0 by heating the air say 10°C above the He, the temperature of
the air becomes a marker (like dye in the water channel).

e The air temperature marker Is better because it matches the
mass diffusivity and so can provide measurements of:
- Instantaneous density
- Mean density
- Molecular mix
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Design Summary

Parameter

At# =(p,—p)/(p+p5)
Length

Height
Depth
Re
U
Cost/run
Diagnostics

max

Cambridge, UK

Small At # (hot/cold)

1.0 E-3

1.0m

0.3m

0.2m

~700

0.05 m/s

~$0
Thermocouple
Dye

PIV

Malcolm Andrews

Large At # (air/helium)

0.755
20m
0.6m
0.4 m
~2400
1.0 m/s
$20
Thermocouple
Smoke
Hot wire
PIV?
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Diagnostics

Flow visualization: Smoke
Thermocouple measurements: Density
PIV: Velocities (see next)

Hot-wire anemometry: Velocities
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