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ΤΑ Μ

What is Rayleigh-Taylor Mixing?

Heavy Heavy Heavy

Light Light Light

g

Linear growth         Non-linear growth     Turbulent mixing

Main non-dimensional number: Atwood: At≡(ρ1−ρ2)/(ρ1+ρ2)
Interface is unstable if: 0<∇•∇ ρp

ρ
ρ

∇×∇p2

1Baroclinic generation of vorticity:
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ΤΑ Μ

Applications
Technology:

• Degradation of ICF capsules (10-12s).
• Formation of oil trapping salt domes (1015s).
• Counter-gradient transport in engine cylinders with swirl.
• Modulation of heat transfer with twisted tapes in tubes.
• Atmospheric temperature inversions (clear air turbulence).
• Multi-phase mixing - drop disintegration.

Space:
• Super-Nova Remnants (SN1987A).
• g-Jitter - Bridgman crystal growth.
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ΤΑ Μ

Overview
• Rayleigh-Taylor mix experiments are difficult!
• Modern turbulent mix models involve statistical quantities 

and demand extensive experimental data sets for validation.
• Transient Rayleigh-Taylor experiments do not lend 

themselves to statistical data collection.
• Over the past 8 years we have developed a statistically steady 

R-T experiment that facilitates statistical data collection.
• Our Rayleigh-Taylor mix data is used to validate models for 

the description and understanding of hydrodynamic 
instabilities that develop during the implosion phase of ICF 
capsules.
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ΤΑ Μ

Previous Experiments

• Read (1980) - Rocket Rig (0≤At≤1).

• Andrews (PhD, 1986) - Overturning tank (0≤At≤0.05).

• Redondo & Linden, Dalziel (1989) - Sliding plate (0≤At≤0.05).

• Dimonte (1992) - LEM (0≤At≤1).

• Kucherenko (1991) - High acceleration (0≤At≤1).
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ΤΑ Μ

Previous Experiments cont.

Ken Read (1980)

The “Rocket Rig”

Aldermaston, UK.
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ΤΑ Μ

Previous Experiments cont.

Rocket rig
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Previous Experiments cont.

Andrews, PhD (1986).

The “2-D Turning Tank”.

Imperial College, UK.

Tank size: 25cm x 36cm x 0.5cm
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ΤΑ ΜPrevious Experiments cont.

2-D Turning Tank - Tilted-rig
Tilt angle = 55’
ρ1=1.1 g/cm3 (brine)
ρ2=1.0 g/cm3 (water)
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ΤΑ ΜSchematic of TAMU
R-T Water Channel
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ΤΑ ΜExperimental Details
Hot        Cold
Water  Water

1.0 m

Camera
640H x 480V Pixels
1200 Image Capacity 
on Board

Lasers
Two 120 mJ
15 Hz pulse
Sample rate: 30/sec.

Image
10.5 cm Hort.
x 8 cm Vert.
0.017 cm/pix

0.3 m

0.2 m

PIV particle 
concentration:
3mL/2000 L

E-type thermocouples
Nickel-Chromium and Constantan
Junction diameter of 0.01-0.02 cm
Response time 0.001 s/oC
Acquisition rate  8 kHz. 
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ΤΑ Μ

R-T Water Channel

• Statistically steady.

• Density difference by hot/cold water thermal expansion.

• Small Atwood numbers (20oC):  0≤At≤0.01 .

• Time is x/U0 (parabolic flow).

• Long collection times (up to 15 minutes).

• Symmetric mix (bubbles and spikes same).

• Good diagnostics available.
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ΤΑ ΜPhotograph from 
Experiment

At # = 10-3

∆Τ = 5οC

U0 = 4 cm/s

Cold water

Warm water

35 cm downstream
10 cm
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ΤΑ Μ

Video of Experiment
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ΤΑ Μ

Mechanisms

Initial linear
saturation,
C∞≈0.7

Quadratic
self-similar
growth

α≡”Universal” growth constant ~ 0.07 (debatable)
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ΤΑ Μ

Summary of Data 
Collected

At Atwood numbers of 10-3 and 5x10-4:

• Density profiles across mix; width quadratic growth rate, α

• Ensemble averaged measurements of turbulence R-T 
mixing correlations: 

• Turbulence density fluctuation energy spectra.

• Molecular mix fraction, θ

• Αnisotropy tensor, energy dissipation.

vuvuvu ′′′′′′′′′ ρρρ ,and,,2,2,2
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Parameter Definitions
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ΤΑ Μ

Mean Density Profiles
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Mean density profile taken with thermocouple 
measurements, and showing error bars.
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ΤΑ Μ

Mix Width Development
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ΤΑ ΜEnsemble Averaged 
Volume Fractions

2W

140 photos
At=0.00064, ∆T=6oC
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ΤΑ Μ

Measurement of α

α = 0.07

( )
0U

xWgAt
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ΤΑ Μ

Parameter Definitions
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ΤΑ ΜDensity Fluctuation 
Power Spectra
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ΤΑ ΜMore Power Spectra
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ΤΑ ΜPIV
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ΤΑ Μ

Photographs                   Vorticity
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ΤΑ Μ

Photographs overlaid with vorticity

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Malcolm Andrews 28/46
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Parameter Definitions
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A          B

Bo from PIV-S
Bo from Thermocouple

B2 from PIV-S
B2 from Thermocouple
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ΤΑ Μ

θ from PIV-S
θ from Thermocouple
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ΤΑ ΜVelocity Fluctuations 
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ΤΑ ΜAnisotropy Tensor
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Anisotropy Tensor

A          B

35 cm

y (mm)

b 11
,b

22

-60 -40 -20 0
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

b11
b22

2.4 cm

y (mm)

b 11
,b

22

-5 0 5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
b11
b22

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Malcolm Andrews 35/46

ΤΑ ΜEnergy Dissipation
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4 cm/s 4 cm/s

Velocity vectors from PIV

Grid size: 16 x16 pix. Grid size: 8 x 8 pix.
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ΤΑ Μ

V-velocity Wavenumber spectra
x = 35cm, A=0.00075
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ΤΑ Μ

U-velocity Wavenumber Spectra
x = 35cm, A = 0.00075

Wavenumber, k

Po
w

er
,P

10-1 100 10110-3

10-2

10-1

100

101

6cm x 4cm (u)
3cm x 2cm (u)
3cm x 2cm - Iterative PIV (u)

-5/3

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Malcolm Andrews 39/46

ΤΑ ΜU- and V- velocity Wavenumber 
Spectra

x = 35cm, A = 0.00075
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ΤΑ Μ

3-D MILES Simulations
• CFD code called 3D-RTI from Andrews.

• Transient 3-D VOF method.

• Euler, incompressible (MILES).

• 3rd order Van-Leer limiters used to prevent 
non-physical oscillations (momentum and 
volume fractions).

• Initial velocity field set by velocity potential.

• nx*ny*nz: 96:48:96

• X*Y*Z: 30cm:15cm:30cm

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



11/21/2005

Malcolm Andrews 41/46

ΤΑ Μ

3-D MILES Simulations
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ΤΑ Μ

A New High At Experiment
(under construction with funding from the DOE)

• 0 ≤ At ≤ 0.75

•Air/Helium (gases at room temperature).

• Statistically steady.

• Lewis # ~ 1 (ratio of thermal & mass diffusion).

• Heat air & use temperature as fluid marker.
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ΤΑ ΜSchematic of New TAMU
High At Experiment
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Photograph of facility

Flow
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Figure 2. Air/Helium Facility as of December 8, 2003.
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ΤΑ Μ

Photograph from facility
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Current & Future Work

• Effect of initial conditions and coupling to CFD (LLNL).

• Buoyancy driven wakes (DOE).

• Gas channel (DOE).

• CFD Simulation & modeling - RM (Jacobs @ Arizona).

• 3-D MILES of RT mixing (LANL).

• Environmental and Naval applications.
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Buoyant Wakes
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C
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Buoyant Wakes
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Properties

Properties at 20oC Water Air Helium
Density (kg/m3) 998.0 1.19 0.166
Viscosity (N s/m2) 1.003 E-3 1.80 E-5 1.97 E-5
Kinematic viscosity (m2/s) 1.005 E-6 1.51 E-5 1.19 E-4
Prandtl # 7.0 0.7 0.7
Schmidt # 600 (H2O/NaCl) 0.22 to 1.73 (varies across mix)
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Key Design Considerations
• Keeping the flow parabolic so that the Taylor hypothesis 

may be used to relate time and space as t = x/U, where U is 
the channel flow speed and x the distance downstream.

• The maximum Reynolds number for the mix.

• The cost of helium, which is related to the x-sectional area 
and the flow speed U.

• How to measure the instantaneous density.
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Parabolic Flow
207.0 tgAthb =  or ( )207.0 UxgAthb =

25.0)15tan( ≈< o
b UhParabolic if:

Setting At=0.75, hb,max=0.3 m at xmax=1 m, gives U ~ 1.0 m/s
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Max Re

centerline

bbhh
ν

=Re

Setting At=0.75, hb,max=0.3 m at xmax=1 m, gives:

Cold/Hot water: Remax=700

Air/Helium: Remax=2400
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Cost of He
Cost of He ~ $4/m3

Setting U= 1m/s, X-section area=0.3*0.4=0.12 m2

Gives the max volume flow rate of 0.12 m3/s

Allow 20 flow lengths (1 m) gives 2.4 m3/expt.

Filling channel ~ 2.6 m3

Total volume/expt. = 5m3. Cost/expt. = $20Cost/expt. = $20
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Measuring Density
• Density measurement is the problem with two-component 

gases.

• But in gases the thermal and mass diffusivities are close.

• So by heating the air say 10oC above the He, the temperature of 
the air becomes a marker (like dye in the water channel).

• The air temperature marker is better because it matches the 
mass diffusivity and so can provide measurements of:

- Instantaneous density
- Mean density
- Molecular mix
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Design Summary
Parameter Small At # (hot/cold) Large At # (air/helium)

At # =(ρ1−ρ2)/(ρ1+ρ2) 1.0 E-3 0.755
Length 1.0 m 2.0 m
Height 0.3 m 0.6 m
Depth 0.2 m 0.4 m
Remax ~700 ~2400
U 0.05 m/s 1.0 m/s
Cost/run ~$0 $20
Diagnostics Thermocouple Thermocouple

Dye Smoke
PIV Hot wire

PIV?
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Diagnostics
Flow visualization: Smoke

Thermocouple measurements: Density

PIV: Velocities (see next)

Hot-wire anemometry: Velocities
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