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Overview

• Motivation

• Setup of the experiment

• Buoyant wakes and the Rayleigh-Taylor instability

• Visualizations of the wake

• Experiment data and analysis

• Toy model for decaying velocity fluctuations

• Conclusions
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Motivation

• To study the interaction of competing equlibria within a 
turbulent mixing layer. Specifically the exchange of 
equilibrium between the Rayleigh-Taylor instability and a 
plane wake will be investigated.

• Investigate the effects of unstable buoyancy on the near 
wake development.
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Objectives
• Disturb a Rayleigh-Taylor mixing layer using a cylindrical 

obstruction.

• Measure the response of the subsequent wake to 
unstable stratification.

• Measure the recovery of the mixing layer from a 
disturbance of its equilibrium.

• Understand the mechanisms for recovery to equilibrium 
growth of the Rayleigh-Taylor instability. 

• Develop a mathematical model to describe the effects of 
buoyancy on the near wake behavior.
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Experimental results to be 
presented

• Decay of v’rms in the wake of the cylinder
• Change in formation length of shedding 

vortices with turbulence levels
• Molecular mixing in the wake
• Density spectra in the centerline of the 

wake
• Recovery of the buoyancy driven 

turbulence
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Setup of the experiment
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Diagnostics:
•PIV
•PLIF
•Thermocouple system
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Previous research on wakes

• Non-buoyant wake
– Extensive research on both the near and far wake.  A 

comprehensive review is provided by Williamson 
(1996)

• Stably stratified wake
– Recent experiments by Xu et al (1995), Bonnier et al 

(2002), and Spedding (1997,2002)
• Unstably stratified wake

– Nothing significant
– Convection heat transfer studies of heated/cooled 

cylinders
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Buoyant wake

∆T≅ 5°C

Mean velocity U (cm/s) 4.0 - 4.3 

Cylinder diameter D (cm) 1.6 

Kinematic viscosity ν  (cm2/s) 0.01 

Reynolds number Re 640-690 

Internal Froude number Fi2 -7 

Atwood number A 5x10-4 

 

Fi = U/ND

N2 = -g/ρo (∂ρ/∂z)

Wake with stable buoyancy:
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Rayleigh-Taylor instability

p∇

Governing Parameter:p∇
( ) ( )2121 / ρρρρ +−=A

ρ∇

0<∇•∇ ρp

Self-similar growth
of the mix half-width, h:

2Agth α=
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Verification of the experiment

A wake with no buoyancy

D = 1.6 cm
U = 4.0 cm/s

fs ≅ 0.49 Hz Confirmed through:

St = 0.2 = fs D / U ⇒ fs = 0.5 Hz
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Verification of the experiment 
(cont.)

A vector field and vorticity contours for 
the near field a wake with no buoyancy.
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Visualization of the buoyant wake
Visualizations of the buoyancy driven 

wake using Nigrosene dye. 

(A) Buoyancy driven-mixing layer 

(B) Buoyancy-driven mixing layer 
and wake with a cylinder of          
D = 1.6 cm 

(C) Buoyancy-driven mixing layer 
and wake with a cylinder of         
D = 3.25 cm.  

U = 4 cm/s for all three experiments. 

(A)

(B)

(C)
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PLIF of the buoyant wake

10.5 cm

D = 1.6 cm
U = 4.0 cm/s
A = 5x10-4
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Visualization of buoyancy effects

(A)

(B)

(C)

Visualizations of buoyancy effects on wakes 
using Nigrosene dye. 

(A) Buoyant wake 

(B) Wake with stabilizing buoyancy 

(C) Wake without buoyancy effects. 

All three wakes are formed from flow around 
a cylinder of D = 1.6 cm and U = 4 cm/s. 
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Decay of v’rms in the wake

D = 1.6 cm
U ≅ 4 cm/s

Decay of vertical velocity fluctuations, v’rms, in the wake of a cylinder with stable 
buoyancy (triangles), unstable buoyancy (squares), no buoyancy (circles), and a 
typical Rayleigh-Taylor mixing layer for the same experimental conditions 
(dashed line). 
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Decay of v’rms in the near field
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Unstable           Fi2=- 7      (A = 5E-04)
No Buoyancy    Fi2= ∞        (A = 0)        

D = 1.6 cm
U ≅ 4 cm/s

Decay of vertical velocity fluctuations, v’rms, in the very near 
wake of a cylinder with stable buoyancy, unstable buoyancy, 
and no buoyancy. 
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Recovery of buoyancy-driven 
turbulence

α = 0.07

Agtv 2/′=α
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Power spectra of v’ in the wake 
with unstable buoyancy

Power spectra of centerline v’ in the buoyant wake for a 
cylinder diameter of 1.6 cm and A = 5x10-4. 
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Toy model for velocity fluctuations 
in the buoyant wake

ε
σ
υ

−+⎟⎟
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t
mt lkc 2/1

µυ =

The assumptions made to simplify the one-equation model:
1) The flow is statistically steady.
2) Mean velocity components in directions other than the x-

direction can be neglected.
3) k follows a “top-hat” profile across the wake (in 

the y-direction) so that k = k(x).
4) The diffusion transport term in the x-direction is 

negligible compared with convective transport in 
the x-direction.

5) The velocity fluctuations at the centerline of the 
wake are locally isotropic.
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Model formulation

m

D

l
kC

kg
dx
kd

U
2/3

2/1 −
∆

−=
ρ
ρ

m

D

l
vCg

dt
vd 2

2/3

2/12/1

2
3

6
1 ′

−
∆

⎟
⎠
⎞

⎜
⎝
⎛−=

′
ρ
ρ Dlm =where

D
vC

dt
vd D

2

2/3

2/1

2
3 ′

−=
′

D
vCg

dt
vd D

2

2/3

2/12/1

2
3

6
1 ′

−
∆

⎟
⎠
⎞

⎜
⎝
⎛−−=

′
ρ
ρ

D
vC

g
dt
vd D

2

2/3

2/12/1

2
3

6
1 ′

−
∆

⎟
⎠
⎞

⎜
⎝
⎛−+=

′
ρ
ρ

No buoyancy:

Stable buoyancy:

Unstable buoyancy:
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Mathematical solutions
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1Where , , and v’peak is the maximum value of the v’rms at the centerline of the  near wake.
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Mathematical solutions
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Model behavior

Decay of v’rms in the near wake for the cases of no buoyancy, stable 
buoyancy, and unstable buoyancy as determined from the model solutions 
using CD = 0.42 and for A= ± 5x10-4. 

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



24/26

ΤΑ Μ

Variation of CD with buoyancy

-0.043-0.0430.590.945.0x10-4Unstable(8)

-0.024-0.0240.200.940None(7)

-0.074-0.0740.580.94-5.0x10-4Stable(6)

-0.061-0.0610.771.67.5x10-4Unstable(5)

-0.038-0.0380.591.65.0x10-4Unstable(4)

-0.054-0.0540.421.60None(3)

-0.077-0.0770.291.6-5.0x10-4Stable(2)

-0.085-0.0850.201.6-7.5x10-4Stable(1)

ModelExperimentCDD (cm)AStratification

(∂v’/∂x)(D/U)

noneDstableD CC 5.0≈

noneDunstableD CC 5.1≈
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Conclusions

• The transport of energy to the wake from potential energy stored in 
the unstable density gradients, results in a remarkably rapid return 
to the characteristic behavior of the Rayleigh-Taylor mixing layer.

• The dynamics of the flow directly behind the cylinder is dominated 
by the wake, with little influence from the buoyancy.

• The level of buoyancy driven turbulence preceding the cylinder and 
subsequent wake affects the length of the formation region for 
shedding vortices.

• The proposed model qualitatively demonstrates the observed decay
of centerline vertical velocity fluctuations in the near wake.
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Future work

• Effect of unstable buoyancy on vortex structure

• Change in formation length for vortices due to buoyancy 
driven turbulence

• Parametric study of the buoyant wake to further 
characterize the behavior

• Further investigation of the recovery of buoyancy driven 
turbulence and competing equilibria
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Particle image velocimetry (PIV)

• Laser source – Nd-YAG, 30 Hz

• Laser sheet forming optics

• CCD Camera ( 640 x 480 pixels )

• Seed particles – (~ 10 µm)

C a m e r a
L a s e r s

I m a g e

6 cm

4.5 cm

t t+∆t
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Planar laser induced fluorescence (PLIF)

• Laser source 

• Laser sheet forming optics

• Filter

• CCD camera

• Fluorescent dye – Rhodamine 6G

C a m e r a
L a s e r s

I m a g e
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Thermocouple system
E-Type thermocouple

Effective sampling rate of 500 Hz

Sampling time of ~ 120 sec

Displacement coefficient:

)(/)( 122 TTTT avg −−=φ

Equation of State (Kukulka 1981):

.
10159.181

10295.39310756.14910448.55007922.02249.188396.999
3

51249362

T
TTTTT
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−−−
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Variation of the location of v’peak

Variation of the location of peak v’rms with mixing layer turbulence level.  
Flow conditions for both cases were with a U = 4.4 cm/s, A= 5x10-4 
and a cylinder diameter of 1.6 cm. 
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Molecular mixing in the wake
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For two completely molecular mixed fluids θ is equal to 1 
and for two immisicble fluids θ is 0. 
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Power spectra of centerline density 
fluctuations in the wake

A comparison of power spectra of centerline density fluctuations in the 
buoyant wake (solid black line) and a mixing layer driven by the
Rayeigh-Taylor instability (dotted red line) obtained from Ramaprabhu
(2003). 
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