Spectral Characteristics of Turbulence Driven by Rayleigh-Taylor Instability

Joanne M. Holford^{1,2}, Stuart B. Dalziel¹, & David Youngs³

DAMTP, University of Cambridge, UK BP Institute, University of Cambridge, UK AWE plc, Aldermaston, UK

Outline

• Introduction

Rayleigh-Taylor instability, turbulent spectra, sensitivity to initial conditions, MILES codes

• Simulations

Turmoil code, statistics, initial conditions

• Results

Spectral shape, time evolution, influence of initial conditions, dominant wavenumber, mixing layer width

• Conclusions

Introduction

• **R-T** instability $\rho_1 > \rho_2$

Non-dimensional parameter

Atwood number $A = \left(\frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}\right) = \frac{g'}{2g}$

Linear stability analysis (1D)

For mode of wavenumber k, interface at $h(x,t) = \operatorname{Re}\{h_0 e^{ik.x + \sigma t}\}\$, growth rate $\sigma = \sqrt{kAg}$

Small scales are most unstable, unless damped by viscosity Rayleigh (1883), Taylor (1950)

<u>Nonlinear growth</u>

Dimensional analysis - mean width of mixing region \overline{h} depends on *t* and *Ag*, hence $\overline{h} \propto Agt^2$, like t^2 . Experimentally and numerically, $\overline{h} = 0.06Agt^2$ *Read (1984), Burrows, Smeeton & Youngs (1984)*

For an external lengthscale *H*, timescale $\tau = \sqrt{\frac{H}{Ag}}$

Larger scales observed at later times

Introduction

• Turbulent spectra

Homogeneous isotropic turbulence

At high enough Reynolds number, inertial range $E(k) \propto k^{-5/3}$, between energy input scale and dissipation range. At high *k*, spectra decay faster than a power law.

Buoyancy-driven turbulence

Clear air turbulence: $k^{-5/3}$ at high wavenumbers, k^{-3} at lower wavenumbers (provided work done against gravity is small) *Shur (1962), Lumley (1965)*.

Convection adjacent to a heated wall: velocity and temperature fluctuations (right) exhibit k^{-3} spectra

Introduction

• Sensitivity to initial conditions

Presence of large scales affects mixing layer growth *Dalziel et al (1999)*

Choice of random initial conditions affects DNS simulations Cook & Dimotakis (1999)

• MILES codes

Conservation of mass and momentum imposed by the algorithm: loss of resolution at grid scale mimics diffusion of solute and viscous dissipation

- In a real fluid, viscosity v is fixed, and velocity gradients adjust so that dissipation rate ε matches rate of energy supply. Dissipation concentrated at wavenumbers $k > k_v = (\varepsilon/v^3)^{1/4}$
- In code, k_v is fixed, all energy reaching scales $k > k_v$ is dissipated, so viscosity v varies

Simulations

• Turmoil (David Youngs)

Compressible code, for a mixture of two ideal gases

3D MILES with resolution 200×160×80

Normalisations: choose H = 1, Ag = 1, $\rho_1 = 1$

Choose parameters to approximate an incompressible fluid. Nondimensional parameters (ideally small):

density ratio $B = \Delta \rho / \rho = 2/g \approx 0.18$

Mach number $M = \sqrt{(3/5p_0)} \approx 0.08$

incompressibility ratio $I = g^2/10p_0 \approx 0.12$

Compromise g = 11, $p_0 = 100$

Simulations

• Statistics in the horizontal mid-plane

Average over 8 horizontal planes

Data extended using appropriate even/odd symmetry at boundaries to create periodic data

Calculated every $\tau = 0.25$

Look at energy in concentration variation and velocity components

Integrate over horizontal direction to give 1D spectra

Simulations

• Range of initial conditions

Displace the interface by a few pixels to give random initial perturbation

In some cases, add large scale perturbation in velocity field to mimic experiments in DAMTP

Vary amplitude, smoothness, slope of random noise

• Spectral shape

For high wavenumber perturbation at $\tau = 1$ (turbulence developing)

Peak energy where dissipation begins ($\lambda \approx 6\Delta x$ or $k/\pi \approx 67$)

Power law in dissipation range

Cambridge, UK

Edited by S.B. Dalziel

• Time evolution

 $\tau = 0, 1, \dots 10 \text{ (purple} \Rightarrow \text{blue)}$

Similarity behaviour in turbulence not constrained by domain size $(3 < \tau < 5)$

Velocity becomes isotropic as concentration fluctuations decay (τ >8)

Cambridge, UK

Edited by S.B. Dalziel

k-3

k-5/3

High *k*

1000

100.0

10.0

Results

• Varying initial conditions

Concentration spectra

Little difference between extreme initial conditions

Amount of molecular mixing is also very similar

 k^3

1000

100.0

10.0

1.0

0.1

0.01

0.001

1.0e-4

Power $\log(\sigma^2(k/\pi))$

Edited by S.B. Dalziel

• Dominant wavenumber

Wavenumber of peak vertical velocity disturbance depends on initial spectrum for $\tau < 2$

Evidence of period-doubling

• Mixing layer width

Bias towards energy at low k in simulation with initial k^{-3} spectrum gives slower initial growth faster late time growth

Conclusions

- Spectra evolve rapidly ($\tau < 1$) to similar shapes
- Similarity phase: spectra approximately constant for $3 < \tau < 5$
- High *k* spectra and amount of molecular mixing are not sensitively affected by the initial conditions. Power law behaviour which steepens with time $(k^{-3} \rightarrow k^{-5})$
- Low *k* spectra, early dominant k_{max} and time origin are sensitively affected by the initial conditions. In particular *k* -³ spectrum gives particularly rapid growth