SHOCK BUBBLE INTERACTINN: NUMERICAL SIMULILATION

Jérôme Giordano, Yves Burtschell, Guillaume Layes, Georges Jourdan and Lazhar Houas

 IUSTI UMR CNRS 6595 Technopôle de Chateau Gombert I3453 Marseille.

Numerical model and study case

Our numerical code is based on the discretization of Navier-Stokes's equations by a finite volume method A second order scheme, for both space and time, with a Van Leer slope limiter has been used. Moreover, convective fluxes are calculated with an exact Riemann solver, diffusive fluxes are estimated by the means of a centered finite difference method.

The distortion mechanism of the bubble in the light/heavy (air/helium) as well as the light/heavy case (air/krypton) is well described by the simulation. In the same way, all shocks are well captured.

Krypton bubb	$t=70$
\bigcirc	\bigcirc
\cdots	(1)
0	(1)
$)^{1}$	(2)
\bigcirc	(2)
0	0
\bigcirc	$\times 2$
	(2)
0	$\frac{2}{2}$
0.	$\frac{5}{2}$
$1{ }^{1}$	λ
$7{ }^{1}$	$\frac{5}{2}$
1	\%)
3	5)
10	3
11	क)

Bubble volume evolution

As for the Krypton, the vorticity is concentrated on the bubble frontiers.
The mixing has not yet started.

One can note the initial compression of bubbles.
The final volume seems to be constant and equal of about 80% of the initial volume.

Conclusion

Our numerical results are in good agreement with experiments.
The numerical simulation shows the link between the mixing zone and the vorticity zone.
The simulation as well as the experiment, point out the initial compression of the bubble. The final values of the bubble volume are close.

Numerically, the bubble volumes are constant after the initial compression.

