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OutlineOutline
Turbulent Mixing
• Comparison to Laser Experiments 
• Numerical Mass Diffusion 
• Compressible Effects
• Averaged Equations

– An entropy inequality
– N > 2 fluids

Front Tracking
• Locally Grid Based
• Conservative
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Validation from OMEGA, NIF mix experimentsValidation from OMEGA, NIF mix experiments

Experiments by P. Drake (U. MIch.), B. Remington 
(LLNL) to test single mode Rayleigh-Taylor mixing and 
transition to mode breakup, chaos, and turbulent 
mixing
• Radiation preheat modifies initial data
• 1D Rad hydro data from HYADES code

Preshot Frontier predictions 
• Use 1D data in slices to get rad hydro heating
• Use FronTier to get accurate interface motion
• Predict pre-hydro initial conditions due to preheat and 

influence on hydro instabilities
Post shot comparison to experimental data: excellent
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Preshot:Preshot:
Data after preheat 
motion (far right).
Perturbation is 
compressed 2X,
compared 
to the as machined 
sine wave (left).
Shape change
modifies hydro
instability 
development.
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Postshot Comparison of FronTier Simulations 
with Remington et al Experiment
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The FronTier Fluid Mixing SimulationThe FronTier Fluid Mixing Simulation

Early time FronTier simulation of Late time FronTier simulation of a
3D RT mixing layer. 3D RT mixing layer.
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Time Dependent Atwood NumberTime Dependent Atwood Number
For each z
• Compute the maximum and minimum density
• Form a space and time dependent A(z,t) from 

min/max
Average A(z,t) over bubble region to get A(t)
Untracked A(t) is about ½ nominal value due to 
mass diffusion; tracked A(t) is virtually constant
If A(t) is used in definition of alpha, all 
simulations agree (with each other, with 
experiment, with theory)
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Time Dependent Atwood Numbers
Comparison of tracked and untracked simulations

Time Dependent Atwood Numbers
Comparison of tracked and untracked simulations

A(t)

Time
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Density at Z = const. Cross section.
Comparison of FronTier (left) and TVD (right)

50% reduction of density contrast in untracked
simulation
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FronTier and TVD Simulations 
without / with diffusion renormalization of time scales

FronTier and TVD Simulations 
without / with diffusion renormalization of time scales

2A g t 2 ( )gA s dsdt∫∫

Z Z

All alphas agree: theory, experiment,
all simulations

Alphas from theory, experiment, some
simulations agree; most simulations disagree
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Self Similar Highly Compressible MixingSelf Similar Highly Compressible Mixing

2Agt ( )
1

1
0 0

2
st

A s gdsds∫∫
Systematic theoretical and simulation of effects of compressibility on 
mixing rates: A well defined mixing rate alpha (right frame) is 2X larger
than the incompressible value.
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Theoretical Model for Compressible MixingTheoretical Model for Compressible Mixing
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Buoyancy Drag Eq.

Time Dependent Atwood
defined at bubble tip

Physics model: Heavy fluid is isothermal at bubble tip from initial conditions; 
Light fluid is isentropic in its change from original z = 0 value

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



13

Compressible EOS Effects on Mix:
Single Mode RT in 2D

Compressible EOS Effects on Mix:
Single Mode RT in 2D

Strongly compressible: EOS effects are not 
important
Weakly compressible
• Form drag and terminal velocities: insensitive
• Pressure drag: highly sensitive
• Shape highly: sensitive
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Mixing Rate Summary
Time Dependent Density Contrast

Mixing Rate Summary
Time Dependent Density Contrast

All incompressible mixing rates are equal after 
allowing for effects of numerical mass diffusion
• Experimental, theoretical, numerical

Highly compressible mixing is self similar after 
allowing for effects of stratification
Mixing rate thus defined has a strong 
dependence on compressibility
Weakly compressible
• Strong EOS effects for some variables, not for 

others
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Theoretical Prediction of Mixing RateTheoretical Prediction of Mixing Rate

Bubble merger (small bubbles removed, large 
ones grow to fill space)
Merger leads to fewer but larger bubbles
Variation in bubble height adds to velocity of 
bubbles
New equation derived to relate:
• Mixing rate
• Fluctuations in bubble height
• Mean bubble diameter
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Bubble Merger ModelBubble Merger Model
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Two-Pressure Two-Phase Flow 
Model

Two-Pressure Two-Phase Flow 
Model

• k = 1, 2 : the light  and heavy fluid 
• g = g(t) > 0 : acceleration  
βk , vk ,ρk , pk , Sk , ek , Ek : the volume fraction, velocity, density, pressure,

entropy, internal energy and total energy of fluid k

• The averaged equations
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Energy averaged equationsEnergy averaged equations

Entropy is a nonlinear function of other 
variables (density, internal energy)
The entropy of the averages (of these 
other variables) is not equal to the 
average of the (microphysical) entropy
Difference, the entropy of averaging, has a 
definite sign (positive).
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New closure for (pv)*New closure for (pv)*

Positivity of entropy 
• Assume an entropy of averaging, must be positive
• New constraint introduces coupling between two 

edges of mixing zone
• Analytic basis for previous edge coupling 

conclusions based on center of mass assumptions
New closure satisfies all conservation and 
boundary constraints
Improved physical and mathematical basis
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New N > 2 Materials ClosureNew N > 2 Materials Closure
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Front Tracking: Grid free vs. Grid basedFront Tracking: Grid free vs. Grid based

Grid free: interface and interior (volume) grid 
are unrelated
Grid based: the interface is directly tied to the 
volume grid. 
• The interface is defined by its intersections with the 

grid cell edges. 
• In the interior of the cell, the interface is 

reconstructed from its cell edge crossings.
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Grid free vs. Grid basedGrid free vs. Grid based
Grid free
• more accurate
• less robust

Grid based
• highly robust
• less accurate

Locally grid based; Hybrid 
• best of both algorithms
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Grid based vs locally grid based
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Conservative TrackingConservative Tracking
Track space time interface
Solution is discontinuous across space time 
interface but space time flux is continuous
• This statement is exactly the Rankine-Hugoniot

relations for the discontinuity
Use finite volume differencing in irregular space 
time volumes
1st order accurate at tracked front
Replaces ghost cell extrapolation
• Glimm, Marchesin, McBryan, 1980
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Conservative tracking (40 cells) vs. 
Nonconservative tracking, 40, 80, 160 cells 

Conservative tracking (40 cells) vs. 
Nonconservative tracking, 40, 80, 160 cells 

NC 40 NC 80 NC 160C 40
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Comparison of growth rates:
40, 160 cell Cons. Tracked and 160 noncons. Tracked are 

similar; 40 cell Noncons. Tracked has slower growth

Comparison of growth rates:
40, 160 cell Cons. Tracked and 160 noncons. Tracked are 

similar; 40 cell Noncons. Tracked has slower growth
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