Recent Developments in the Theory and

Simulation of Turbulent Mixing

B. Cheng, E. George, J. Glimm, H. Jin, X. Li, D. H. Sharp, Z. Xu, and Y. Zhang BNL, LANL, Univ. Stony Brook

Outline

Turbulent Mixing

- Comparison to Laser Experiments
- Numerical Mass Diffusion
- Compressible Effects
- Averaged Equations
 - An entropy inequality
 - -N > 2 fluids
- Front Tracking
 - Locally Grid Based
 - Conservative

Validation from OMEGA, NIF mix experiments

- Experiments by P. Drake (U. MIch.), B. Remington (LLNL) to test single mode Rayleigh-Taylor mixing and transition to mode breakup, chaos, and turbulent mixing
 - Radiation preheat modifies initial data
 - 1D Rad hydro data from HYADES code
- Preshot Frontier predictions
 - Use 1D data in slices to get rad hydro heating
 - Use FronTier to get accurate interface motion
 - Predict pre-hydro initial conditions due to preheat and influence on hydro instabilities
- Post shot comparison to experimental data: excellent

Preshot:

Data after preheat motion (far right). Perturbation is compressed 2X, compared to the as machined sine wave (left). Shape change modifies hydro instability development.

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing Postshot Comparison of *FronTier* Simulations with Remington et al Experiment

The FronTier Fluid Mixing Simulation

Early time FronTier simulation of 3D RT mixing layer.

Late time FronTier simulation of a 3D RT mixing layer.

July 2004

Time Dependent Atwood Number

For each z

- Compute the maximum and minimum density
- Form a space and time dependent A(z,t) from min/max
- Average A(z,t) over bubble region to get A(t)
- Untracked A(t) is about ½ nominal value due to mass diffusion; tracked A(t) is virtually constant
- If A(t) is used in definition of alpha, all simulations agree (with each other, with experiment, with theory)

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing

July 2004 Time Dependent Atwood Numbers **Comparison of tracked and untracked simulations**

Y

A(t)

Cambridge, UK

Density at Z = const. Cross section. Comparison of FronTier (left) and TVD (right)

50% reduction of density contrast in untracked simulation

FronTier and TVD Simulations without / with diffusion renormalization of time scales

Self Similar Highly Compressible Mixing

Systematic theoretical and simulation of effects of compressibility on mixing rates: A well defined mixing rate alpha (right frame) is 2X larger than the incompressible value.

July 2004

Theoretical Model for Compressible Mixing

$$(-1)^{i} Z_{i}'' = Ag - (-1)^{i} \frac{\rho_{i'}}{\rho_{1} + \rho_{2}} \frac{CV_{i}^{2}}{Z_{i}}$$
$$A = A(Z_{i}(t))$$

Cambridge, UK

Buoyancy Drag Eq.

July 2004

Time Dependent Atwood defined at bubble tip

Physics model: Heavy fluid is isothermal at bubble tip from initial conditions; Light fluid is isentropic in its change from original z = 0 value

NATIONAL LABORATORY Edited by S.B. Dalziel

July 2004

Compressible EOS Effects on Mix: Single Mode RT in 2D

- Strongly compressible: EOS effects are not important
- Weakly compressible
 - Form drag and terminal velocities: insensitive
 - Pressure drag: highly sensitive
 - Shape highly: sensitive

Low compressible flow at time of terminal velocity

Mixing Rate Summary Time Dependent Density Contrast

- All incompressible mixing rates are equal after allowing for effects of numerical mass diffusion
 - Experimental, theoretical, numerical
- Highly compressible mixing is self similar after allowing for effects of stratification
- Mixing rate thus defined has a strong dependence on compressibility
- Weakly compressible
 - Strong EOS effects for some variables, not for others

Theoretical Prediction of Mixing Rate

- Bubble merger (small bubbles removed, large ones grow to fill space)
- Merger leads to fewer but larger bubbles
- Variation in bubble height adds to velocity of bubbles
- New equation derived to relate:
 - Mixing rate
 - Fluctuations in bubble height
 - Mean bubble diameter

Bubble Merger Model

- α_b = Growth rate constant for mixing zone
- α_r = Growth rate constant for bubble radius
- $\alpha_{h'}$ = Growth rate constant for height fluctuations
- $(*) \qquad \alpha_b = a\alpha_r^{1/2} + b\alpha_{h'}$
- a, b = Computable quantities
- Eq. (*) validated by direct comparison to experimental data $\alpha_r, \alpha_{h'}$ determined by renormalization group fixed point analysis
- $\alpha_b = 0.06$

The averaged equations

$$\frac{\partial \beta_k}{\partial t} + v^* \frac{\partial \beta_k}{\partial z} = 0, \qquad \beta_1 + \beta_2 = 1$$
$$\frac{\partial (\beta_k \rho_k)}{\partial t} + \frac{\partial (\beta_k \rho_k v_k)}{\partial z} = 0$$
$$\frac{\partial (\beta_k \rho_k v_k)}{\partial t} + \frac{\partial (\beta_k \rho_k v_k v_k)}{\partial z} = -\frac{\partial (\beta_k p_k)}{\partial z} + p^* \frac{\partial \beta_k}{\partial z} + \beta_k \rho_k g$$

 $\frac{\partial(\beta_k \rho_k E_k)}{\partial t} + \frac{\partial(\beta_k \rho_k v_k E_k)}{\partial z} = -\frac{\partial(\beta_k p_k v_k)}{\partial z} + (pv)^* \frac{\partial\beta_k}{\partial z} + \beta_k \rho_k v_k g \qquad \text{(Total energy closure)}$

- k = 1, 2: the light and heavy fluid
- g = g(t) > 0: acceleration

 β_k , v_k , ρ_k , p_k , S_k , e_k , E_k : the volume fraction, velocity, density, pressure,

entropy, internal energy and total energy of fluid *k* **BROOKHAVEN** NATIONAL LABORATORY

Edited by S.B. Dalziel

Energy averaged equations

- Entropy is a nonlinear function of other variables (density, internal energy)
- The entropy of the averages (of these other variables) is not equal to the average of the (microphysical) entropy
- Difference, the entropy of averaging, has a definite sign (positive).

New closure for (pv)*

Positivity of entropy

- Assume an entropy of averaging, must be positive
- New constraint introduces coupling between two edges of mixing zone
- Analytic basis for previous edge coupling conclusions based on center of mass assumptions
- New closure satisfies all conservation and boundary constraints
- Improved physical and mathematical basis

New N > 2 Materials Closure

$$\frac{\partial \beta_{k}}{\partial t} + v_{k}^{*} \frac{\partial \beta_{k}}{\partial t} = 0;$$

$$v_k^*$$
 = average intfc velocity

$$v_k^* = \sum \Psi_{jk} v_{kj}$$

$$v_{kj} = \mu_{kj}^{\nu} v_k + \mu_{jk}^{\nu} v_j$$

$$\mu_{kj}^{\nu} = \frac{\beta_{j}}{\beta_{j} + \sigma_{kj}^{\nu}\beta_{k}}$$
STONY
BROK 21

Cambridge, UK

Front Tracking: Grid free vs. Grid based

- Grid free: interface and interior (volume) grid are unrelated
- Grid based: the interface is directly tied to the volume grid.
 - The interface is defined by its intersections with the grid cell edges.
 - In the interior of the cell, the interface is reconstructed from its cell edge crossings.

Grid free vs. Grid based

Grid free

- more accurate
- less robust

Grid based

- highly robust
- less accurate

Locally grid based; Hybrid

best of both algorithms

Grid based vs locally grid based

Conservative Tracking

- Track space time interface
- Solution is discontinuous across space time interface but space time flux is continuous
 - This statement is exactly the Rankine-Hugoniot relations for the discontinuity
- Use finite volume differencing in irregular space time volumes
- Ist order accurate at tracked front
- Replaces ghost cell extrapolation
 - Glimm, Marchesin, McBryan, 1980

Conservative tracking (40 cells) vs. Nonconservative tracking, 40, 80, 160 cells

Cambridge, UK

Edited by S.B. Dalziel

Proceedings of the 9th International Worth comparison of Softworth rates:

40, 160 cell Cons. Tracked and 160 noncons. Tracked are similar; 40 cell Noncons. Tracked has slower growth

July 2004