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Abstract

In this paper, we present a pressure equation describing fluctua-

tions in a turbulent mixing layer between two fluids. In the comoving

frame of the mixing layer, the pressure fluctuation satisfies a decay-

ing wave equation that can be solved analytically using the Green’s

function method. The obtained 1-D analytic solution for pressure fluc-

tuations across the mixing layer displays the desired features required

by the BHR turbulence transport model. It is shown that the pres-

sure fluctuations, generated by shocks or instabilities in the mixing

region, decay exponentially away from the mixing layer. This new so-

lution could provide a theoretical foundation for the current artificial

nonlocal length-scale equation used in the BHR model. The solutions

successfully reduce to the well known incompressible form in the limit

of large sound speed.
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1. Introduction

Small perturbations in a multifluid system produce buoyancy and shear
driven instabilities at an interface between distinct fluids. These instabilities
grow and develop into a turbulent mixing layer in which the velocity fluctua-
tions induce departures from pressure equilibrium and excite sound waves in
the surrounding fluids. These effects play an important role in the dynamical
evolution of compressible fluids and have to be taken into account even if the
fluids are near pressure equilibrium. Quantitatively analyzing these effects
is fundamental to the studies of turbulent multifluid mixing and is crucial
to the construction of successful mixing models exhibiting a monotone den-
sity profile across the mixing layer. Green’s function method has been very
effective in getting the solutions for pressure fluctuations in incompressible
fluids[1,2] or potential flows. In this paper, we propose to use Green’s function
method to evaluate the possible pressure fluctuations in compressible fluid
systems.

2. Dynamic Equations

We begin with the Navier-Stokes mass and momentum conservation equa-
tions:

∂m

∂t
+ ~∇ · (m~v) = 0, (1)

∂

∂t
(m~v) + ~∇ · (m~v2 + Π + Pδ) = 0, (2)

where m is mass density, m~v is momentum density, P is pressure, Π is viscous
stress, and δ is the unit dyadic.

Averaging equations (1) and (2) gives the bulk fluid equations, which can
be written as[3]:

∂ρ

∂t
+ ~∇ · (ρ~u) = 0, (3)

∂

∂t
(ρ~u) + ~∇ · (ρ~u2 + R + Π̄ + P̄δ) = 0, (4)

where ρ = 〈m〉, ρ~u = 〈m~v〉, R ≡ 〈m(~v − ~u)2〉, Π̄ ≡ 〈Π〉, and P̄ = 〈P 〉. The
angle brackets denote some suitable average.
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To describe the fluctuations within a turbulent mixing layer, it is conve-
nient to transform to the comoving frame of the mixing layer. Let ~x(t) ≡
~x0 +

∫ t

0
dt0~u(~x0, t0) be the time-dependent position of a fluid element at the

center of mass of the mixing layer. We do the coordinate transformation:

~r′ = ~r − ~x(t), t′ = t,

under which

∂

∂t
=

∂

∂t′
− ~̇x · ~∇′, ~∇ = ~∇′, ~̇x ≡ ∂~x

∂t

∣

∣

t=t′
= ~u

(

~x(t), t
)
∣

∣

t=t′
. (5)

Then neglecting the viscous stress, Eqs. (1)–(4) become

∂m

∂t′
− ~̇x · ~∇′m + ~∇′ · (m~v) = 0, (6)

∂

∂t′
(m~v) − ~̇x · ~∇′(m~v) + ~∇′ · (m~v~v) + ~∇′P = 0, (7)

∂ρ

∂t′
− ~̇x · ~∇′ρ + ~∇′ · (ρ~u) = 0, (8)

∂

∂t′
(ρ~u) − ~̇x · ~∇′(ρ~u) + ~∇′ · (ρ~u~u + R) + ~∇′P̄ = 0. (9)

Subtracting Eq. (8) from Eq. (6) and Eq. (9) from Eq. (7), gives

∂m′

∂t′
+ ~∇′ · (m~v′ + m′~u′) = 0, (10)

∂(m~v′ + m′~u)

∂t′
− ~̇x · ~∇′(m~v′ + m′~u)

+ ~∇′ · (m~u~v′ + m~v′~u + m′~u~u + R′) + ~∇′P ′ = 0,

(11)

where m′ ≡ m− ρ, ~v′ ≡ ~v − ~u, ~u′ ≡ ~u− ~̇x, P ′ ≡ P − P̄ , and R
′ ≡ m~v

′2 −R

are fluctuating quantities. Note that

m~v − ρ~u = m~v′ + m′~u,

m~v~v − ρ~u~u −R = m~u~v′ + m~v′~u + m′~u~u + R′.

The main effects of compressibility on a flow are the propagation of sound
waves and the formation of shocks, where the latter can be treated as spatial
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discontinuities described by jump conditions on the fluid properties. Outside
these discontinuities, the gradients of the bulk flow quantities are presumed
small. Taking the divergence of each term in Eq. (11) and applying Eq. (10)
yields

−∂2m′

∂t′2
+ ~̈x · ~∇′m′ + ~∇′2 :

(

m~u′~v′ + m~v′~u′ + m′~u′~u′ + R′
)

+ ∇′2P ′ = 0. (12)

We now consider simple fluids (e.g. isothermal or adiabatic) for which
density and pressure fluctuations are approximately related by

dP ′ ≃ C2
sdm′, (13)

where C2
s ≡ ∂P

∂m
is the local sound speed. For more complex fluids, Eq. (13)

can be generalized to a more complicated equation of state by supplementing
Eqs. (1) and (2) with the energy conservation equation. Substituting Eq.
(13) into Eq. (12) and letting

Σ′ ≡ m~u′~v′ + m~v′~u′ + m′~u′~u′ + R′ (14)

represent the source term, we finally obtain a wave equation for P ′

1

C2
s

∂2P ′

∂t′2
− ~̈x

C2
s

· ~∇′P ′ −∇′2P ′ = ~∇′2 : Σ′, (15)

where the temporal variation of the sound speed in the comoving frame has
been neglected. This wave equation (with propagation speed Cs) describes
the evolution of P ′ in compressible fluids as the propagation of a decaying
sound wave driven by a source. The force term on the right side of the
equation is responsible for any generation of fluctuations in the pressure by
the turbulent flow. Outside the turbulent region, this force is negligible, but
pressure fluctuations nevertheless occur due to sound propagation. This type
of equation is also encountered when describing the propagation of electro-
magnetic waves in conducting media. Shocks can be included by treating
their jump conditions as internal boundary restraints tying together differ-
ent solutions to Eq. (15). If ~̇x(t) ≃ ~u, ~u′ = 0, the source term is simplified to
Σ′ = R′. Furthermore, if the spatial variation of the bulk fluid is negligible,

~̈x ≡ −
[1

ρ
~∇′ · (R + P̄ δ)

]

~r′=0
∼ 0.
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Then Eq. (15) reduces to a simple wave equation

1

C2
s

∂2P ′

∂t′2
−∇′2P ′ = ~∇′2 : Σ′. (16)

In the limit of incompressible fluids, Cs → ∞, this equation reduces to
Poisson’s equation:

∇′2P ′ ≃ −~∇′ · ~σ′, (17)

where ~σ′ ≡ ~∇ · Σ′.

3. The Green’s functions

As in electrodynamics, the inhomogeneous wave equation (15) can be solved
in terms of a Green’s function G which satisfies homogeneous boundary con-
ditions and a causality condition:

G(~r, t|~r0, t0) = 0 if t < t0, (18)

where we have dropped the primes from ~r and t. The corresponding Green’s
function for Eq. (15) satisfies

− 1

C2
s

∂2G

∂t2
− ~̈x

C2
s

· ~∇′G −∇′2G = 4πδ(~r − ~r0)δ(t − t0). (19)

It is reasonable to assume that the initial G and ∂G/∂t should be zero for
t < t0; that is, if an impulse occurs at t0, no effects of the impulse should be
present at an earlier time. Thus the initial conditions that G satisfies are

[

G
]

t=0
= 0,

[∂G

∂t

]

t=0
= 0. (20)

For convenience, we let ~k ≡ ~̈x/C2
s which is assumed varying very slowly with

space and time, τ ≡ t − t0, ~s ≡ ~r − ~r0 and

G = G∗(s, τ)e−
1

2
~k·~s.

Substituting G into Eq. (19) gives a scalar wave equation in 3-D,

1

C2
s

∂2G∗

∂t2
−∇2G∗ +

1

4
k2G∗ = 4πδ(~s)δ(τ). (21)
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We introduce G∗
ω ≡ ge−iωτ , where g satisfies the following equation

[

∇2 +
ω2

C2
s

− 1

4
k2

]

g = −4πδ(~s). (22)

Noticing that δ(τ) ≡ 1
2π

∫ ∞

−∞
e−iωτdω, we obtain the solution to Eq. (22)

g =
1

s
e−i

√
(ω/Cs)2−(k

2
)2s.

which, in turn, leads to

G∗(s, τ) =
1

2π

∫ ∞

−∞

G∗
ωdω =

1

2πs

∫ ∞

−∞

ei(
√

(ω/Cs)2−(k
2
)2s−ωτ)dω. (23)

Rewriting

G∗(s, τ) =
1

s

∂h(s, τ)

∂s
, (24)

where

h(s, τ) ≡ 1

2πi

∫ ∞

−∞

ei(
√

(ω/Cs)2−(k/2)2s−ωτ)

√

(ω/Cs)2 − (k/2)2
dω . (25)

Using the Cauchy’s Integral Theorem and Formula for h gives

h(s, τ) = −CsJ0

[kCs

2

√

τ 2 − (s/Cs)2
]

̟(τ − s/Cs), (26)

where

̟(τ − s/Cs) ≡
{

1 for s < Csτ,

0 for s > Csτ,

and

J0

[kCs

2

√

τ 2 − (s/Cs)2
]

≡ − 1

2πi

∫ 2π

0

e−i kCs
2

√
τ2−(s/Cs)2 cos θdθ

is the Bessel function of the first kind for integer order n = 0.
Thus, the final solution to G∗ in 3-D is

G∗
3D(s, τ) =

δ(τ − s
Cs

)

s
− k

2
√

τ 2 − ( s
Cs

)2
J1

[kCs

2

√

τ 2 − (
s

Cs
)2

]

̟(τ − s

Cs
) ,

(27)
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where J0(0) = 1, ∂J0(x)/∂x = −J1(x), and ∂̟(x)/∂x = δ(x) have been
used, and J1 is the Bessel function of the first kind for integer order n = 1.

In two and one dimensional case, the G∗s can be calculated as

G∗
2D(s, τ) =

∫ ∞

−∞

G∗
3D(s, τ)dη

=
2

√

C2
s τ 2 − ρ2

̟(τ − s

Cs

) − 2

∫ ∞

−∞

J1(z)̟(τ − s
Cs

)
√

C2
s τ 2 − ρ2 − z2

dz

=
2

√

C2
s τ 2 − ρ2

̟(τ − s

Cs
)
{

1 + 2 sinh2
[k

4

√

C2
s τ

2 − ρ2
]}

,

(28)

and

G∗
1D(s, τ) = −h(s, τ) = CsJ0

[kCs

2

√

τ 2 − (s/Cs)2
]

̟(τ − s/Cs), (29)

where s2 = η2 + ρ2.
Substituting the obtained G∗

i , i = 3D, 2D, 1D, into G, we finally obtain
the Green’s function as

Gi(s, τ) ≡ e−
1

2
~k·~sG∗

i (s, τ), i = 3D, 2D, 1D,

that is, for 3-D,

G3D(s, τ) = e−
1

2
~k·~s

{

δ(τ − s
Cs

)

s
− k/2

√

τ 2 − ( s
Cs

)2
J1

[kCs

2

√

τ 2 − (
s

Cs

)2
]

̟

}

,

(30)
for 2-D,

G2D(s, τ) =
2e−

1

2
~k·~s

√

C2
s τ

2 − ρ2
̟(τ − s

Cs
)
{

1 + 2 sinh2
[k

4

√

C2
s τ

2 − ρ2
]}

, (31)

and for 1-D,

G1D(s, τ) = e−
1

2
~k·~sCsJ0

[kCs

2

√

τ 2 − (s/Cs)2
]

̟(τ − s/Cs), (32)

Clearly, the Green’s function in 3-D compressible fluid contains two terms:
the first term in (30) is a production of the initial pulse, reduced, however, by
two factors. The first, 1/s, is the geometrical factor which appeared in the
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solution of the simple wave equation. The second is the factor e−
1

2
~k·~s which

tells us that this part of the wave, generated by the point source, decays
with time as it moves through the medium. The second term in Eq.(30)

constitutes the wake. If |~k| ∼ 0 or |~k|L ≪ 1 (L is the dimension of the source
region or the width of mixing layer), the second term can be neglected and
Eq. (30) further reduces to

G(|~r − ~r0|, τ) = e−
1

2
~k·~s

δ(τ − |~r−~r0|
Cs

)

|~r − ~r0|
. (33)

This represents a decaying retarded potential which describes that the effect
of an impulse at a time t0 is felt at a distance s away at a time t = t0 + s/Cs,
and this effect decays exponentially with the distance.

The two and one dimensional Green’s functions are accordingly have ex-
pressions as follows

G2D(s, τ) =
2e−

1

2
~k·~s

√

C2
s τ

2 − ρ2
̟(τ − s

Cs
) (34)

and
G1D(s, τ) = Cse

− 1

2
~k·~s. (35)

A striking difference between the two and the three dimensional cases is
that in three dimensions the effect of an impulse after a time τ has elapsed
will be found concentrated on a sphere of radius s = Csτ whose center is at
the source point. This is a virtue of the function δ[(s/Cs) − τ ] which occurs
in three dimensions. In two dimensions, the effect at a time τ due to an
impulsive source is spread over the entire region s < Csτ because the singu-
larity at s = Csτ in two dimensional cases is very weak when compared with
the δ function singularity in the three dimensional case. In one dimensional
situations, the effect of an impulse delivered at a time t0 at the point r0 is not
concentrated at the point |r− r0| = ±Cs(t− t0) but rather exists throughout
the region of extent 2Cs(t− t0) with the source point r0 at the middle point.

In the incompressible limit, Cs → ∞, k → 0, the three-dimensional
Green’s function (30), as expected, is reduced to

G(|~r − ~r0|, τ) =
δ(τ)

|~r − ~r0|
, (36)
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a well-known potential for the Poisson’s equation, while the two dimensional
Green’s function remains a constant and the one dimensional Green’s func-
tion has a discontinuity in slope equal to −4π at the point source x0, where
identity δ(Csτ − s) = 1

Cs
δ(τ − s/Cs) is used.

Clearly, from here we see that the effect of compressibility is to change the
Green’s function from a Poisson potential to a retarded potential. It is shown
that the dynamics of incompressible fluid is very similar to electrostatics, i.e.,
the interaction between two points in both systems is instantaneous and the
speed of propagation is infinite, while the dynamics of compressible fluid is
like electrodynamics where the interaction between two points is retarded
and propagated with a finite speed. However, the dynamics of compressible
fluid is more complicated than electrodynamics because of the very different
properties of sound and light speed.

4. Pressure fluctuations

In terms of the Green’s function, using the Green’s theorem and Eq. (20),
we calculate

∫ ∫

[

G(~r, t) × (13)(~r0, t0) − P ′(~r, t) × (16)(~r0, t0)
]

dV0dt0

and obtain the solution for P ′ in (15) by Green’s theorem

P ′(~r, t) =
1

4π

∫ t

0

dt0dV0

[

G
(

~∇2
0 : Σ′

)

+
~k

C2
s

·
(

G~∇0P
′ − P ′~∇0G

)

]

1

4π

∫ t

0

dt0

∮

~dS0·
(

G~∇0P
′ − P ′~∇0G

) (37)

where dV0 represents the element of volume of the considered domain and
~dS0 is the element of the vector surface area surrounding the domain. The

first two terms of Eq. (37) represent the effects of volume sources, while the
last term expresses the boundary conditions, where we have used the initial
condition on P ′

0 and [∂P ′/∂t]0 of P ′ and ∂P ′/∂t. In principle, for any given
source (v′) and boundary condition, the pressure fluctuation P ′ is calculated

uniquely. Apparently, due to the decay factor e−
1

2
~k·~s in the Green’s function,
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for any kind of source, the pressure fluctuation will decay with the distance
from the source.

For clearness, now we take 1-D planar geometry as an example. In 1-D,
s ≡ y − y0, τ ≡ t − t0, then the 1-D Green’s function is expressed as

G1D(s, τ) = Cse
− 1

2
k(y−y0)J0

[kCs

2

√

τ 2 − (
y − y0

Cs
)2

]

̟(τ − y − y0

Cs
), (38)

and

J0

[kCs

2

√

τ 2 − (
y − y0

Cs
)2

]

≡ 1

2π

∫ 2π

0

dθe
−i kCs

2

q

τ2−(
y−y0

Cs
)2 cos θ

, (39)

Let ξ ≡ kCs

2

√

τ 2 − (y−y0

Cs
)2, for |ξ| < π, J0 can be expressed by series expan-

sion

J0 =

∞
∑

0

(−1)k 1

(k!)2

(ξ

2

)2k
. (40)

In the case of kL/2 ≪ 1, Eq. (40) reduces to

J0 ≈ 1 − ξ

4
= 1 − kCs

16

[

kCs

2

√

τ 2 − (
y − y0

Cs
)2

]

. (41)

Therefore the 1-D Green’s function for planar geometry becomes

G1D ≈ Cse
− 1

2
k(y−y0)

{

1 − kCs

16

[

kCs

2

√

τ 2 − (
y − y0

Cs
)2

]}

. (42)

In a comoving frame, the second term in G1D is very small compared to the
first one, therefore as a zeroth order approximation, the 1D Green’s function
can be written as

G1D ∼ Cse
− 1

2
k(y−y0). (43)

This is just the kernel function or ”nonlocal function” e−b(y−y0) used by other
authors [5], but here the parameter “b” can be uniquely determined.

Substituting this expression into Eq. (37), we have

P ′(~y, t) =
1

4π

(
∫ t

0

dt0

∫

V0

dV0G
∂2Σ′

∂y2
0

+

∫

dt0

∮

~dS0·
[

G
∂P ′

∂y0
− P ′ ∂G

∂y0

]

)

≡ I1 + I2,

(44)
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where

I1 ≡
1

4π

∫ t

0

dt0

∫

V0

dV0G
∂2Σ′

∂y2
0

(45)

describes the contribution from the sources Σ′ inside the domain, and

I2 ≡
1

4π

∫

dt0

∮

~dS0·
[

G
∂P ′

∂y0
− P ′ ∂G

∂y0

]

)

(46)

denotes the contributions from the boundaries.
In order to evaluate the pressure fluctuation P ′, we first evaluate the

integral I1, i.e.,

I1 =
Cs

4π

∫

dy0e
− 1

2
k(y−y0)

∫

dθdt0e
−i kCs

2

q

τ2−(
y−y0

Cs
)2 cos θ ∂2Σ′

∂y2
0

. (47)

To evaluate this integral, we would like to consider two special cases: (i) the
near field, Csτ ≫ (y − y0); and (ii) the far field, Csτ ≪ (y − y0).

(i) The near field, Csτ ≫ (y − y0). In this physical situation, the
observation point is close to the source, thus

e
−i kCs

2

q

τ2−(
y−y0

Cs
)2 cos θ ∼ e−i kCs cos θ

2
τ .

If the source term is not explicitly a function of t0, substituting (33) into
(32), we obtain

∫ 2π

0

dθ

∫ t

0

dτe−i kCs cos θ
2

τ ∂2Σ′

∂y2
0

= A(t)
∂2Σ′

∂y2
0

, (48)

where

A(t) ≡
∫ 2π

0

dθ

∫ t

0

dτe−i kCs cos θ
2

τ

is a function of only time. Thus, substituting the above into I1, after many
times integration, it gives

I1 = −A(t)

4π

{[

e−
1

2
k(y−y0) ∂Σ′

∂y0

]y+

0

y−

0

− k

2

[

e−
1

2
k(y−y0)Σ′

]y+

0

y−

0

+
(k

2

)2
∫ y+

0

y−

0

dy0Σ
′e−

1

2
k(y−y0)

}

,

(49)
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and this finally leads to

P ′(~y, t) = −A(t)

4π

{[

e−
1

2
k(y−y0)∂Σ′

∂y0

]y+

0

y−

0

− k

2

[

e−
1

2
k(y−y0)Σ′

]y+

0

y−

0

(50)

+
(k

2

)2
∫ y+

0

y−

0

dy0Σ
′e−

1

2
k(y−y0)

}

− 1

4π

∫

dt0

[

G
∂P ′

∂y0

− P ′ ∂G

∂y0

]y+

0

y−

0

,

where y−
0 and y+

0 are, respectively, the positions of the lower and upper edge
of the mixing zone, and

kΣ′ ≡ 2mu′v′/C2
s + m′(u′/Cs)

2 + R′/C2
s .

For subsonic fluctuations, u′, v′ ≪ Cs, kΣ′ is very small, the first term in Eq.
(50) dominates. Therefore, in 1-D planar case, for any given Σ′, the pressure
fluctuations generated by the fluid mixing indeed decay exponentially with
the distance from the mixing layer. This agrees with the DNS calculations
and the experimental data. Similar calculations can be done for spherical
case.

(ii) The far field. In this case, C2
s τ

2 − (y − y0)
2 ≪ C2

s τ 2, and y is far
from the source. Thus

e
−i kCs

2

q

τ2−(
y−y0

Cs
)2 cos θ ∼ 1 − i

kCs

2

√

τ 2 − (
y − y0

Cs
)2 cos θ,

and
∫ 2π

0

dθe
−i kCs

2

q

τ2−(
y−y0

Cs
)2 cos θ ∼

∫ 2π

0

dθ(1− i
kCs

2

√

τ 2 − (
y − y0

Cs
)2 cos θ) = 2π.

This leads to

I1 = − 1

2Cs

∫

dt0

∫

dy0e
− k

2
(y−y0) ∂

2Σ′

∂y2
0

.

From the calculations in case (i), we obtain

∫

dy0e
− k

2
(y−y0)∂

2Σ′

∂y2
0

=

[

e−
1

2
k(y−y0)

∂Σ′

∂y0

]y+

0

y−

0

− k

2

[

e−
1

2
k(y−y0)Σ′

]y+

0

y−

0

+
(k

2

)2
∫ y+

0

y−

0

dy0Σ
′e−

1

2
k(y−y0).

(51)
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Therefore, integral I1 can be calculated as

I1 =
1

2Cs

∫

dt0

[

e−
1

2
k(y−y0)∂Σ′

∂y0

]y+
0

y−

0

− k

2

[

e−
1

2
k(y−y0)Σ′

]y+
0

y−

0

+
(k

2

)2
∫ y+

0

y−

0

dy0Σ
′e−

1

2
k(y−y0).

(52)

Substituting I1 into P ′, we have

P ′(~y, t) =
1

2Cs

∫

dt0

[

e−
1

2
k(y−y0)∂Σ′

∂y0

]y+

0

y−

0

− k

2

[

e−
1

2
k(y−y0)Σ′

]y+

0

y−

0

+
(k

2

)2
∫ y+

0

y−

0

dy0Σ
′e−

1

2
k(y−y0) − 1

4π

∫

dt0

[

G
∂P ′

∂y0

− P ′ ∂G

∂y0

]y+

0

y−

0

.

(53)

Similarly, the last two terms in Eq. (53) are very small comparing to the
first two terms for subsonic fluctuations.

It is shown that in both the near field solution (50) and the far field
solution (53), if the last two terms are negligible for aτ ≪ Cs, P ′ actually
is expressed as a sort of jumping condition cross the mixing layer with an
exponential decay factor.

5. Conclusion

In this paper, we derived a diffused wave equation for pressure fluctu-
ations in compressible fluid in a comoving frame from the Navier-Stokes
equations. This equation reduces to the simple wave equation if the fluid is
less compressible, and to a Poisson equation if the fluid is incompressible.
Also we have derived the Green’s functions for the diffused wave equation in
1-D, 2-D, and 3-D respectively. All Green’s functions show an exponential

decay behavior e−
1

2
~k·~s with the distance from the mixing layer. This provides

a theoretical foundation for the current use of an artificial nonlocal Kernel
function in BHR model. In incompressible limit, the 3-D Green’s function
reduces to the solution of Poisson equation (a potential of a point source)
as expected. Last, we have provided an analytic expression for the pres-
sure fluctuations in compressible fluid by using the Green’s function method.
Applications to the 1-D planar case is presented. In 1-D planar case, the
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pressure fluctuations generated by mixing indeed decays exponentially with
the distance from the mixing layer. This agrees with both DNS calcula-
tions and experimental data. Similar calculations can be done for spherical
case. In particular, we have examined the solutions, respectively, in the
cases of near field and far field. We found that in compressible multifluids
the pressure fluctuations at a time t and a point ~r are actually caused by the
fluctuations of the local mass densities and velocities at a prior time t− (s/c)
and at a point which is a distance s away from ~r. These fluctuations decay
exponentially with the distance from the source (i.e., the interface between
the fluids or mixing layer). When the speed of sound approaches infinity,
all of our solutions derived for compressible fluids successfully reduce to the
well known forms for incompressible fluids, where, the pressure fluctuations
are induced instantaneously by the fluctuations of the mass densities and
velocities everywhere.
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