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Linear hydrodynamic instabilities in inertial confinement fusion (ICF) target implosions have been
previously investigated using linear perturbation codes (e.g. Henderson et al., 1974; Dufour et
al. 1984). In the context of direct drive implosions, a simple physical model may be retained
which corresponds to that of ideal gas dynamics with electronic heat conduction and a laser energy
deposition modeling. The resulting systems of equations which are incompletely parabolic, are
here written in Lagrangian coordinates for both the spherical symmetric flow and its linear three-
dimensional perturbations. Each one dimensional (1D) system is treated using an operator splitting
between a hyperbolic reduced system and a parabolic equation.

The proposed numerical method significantly differs from previous linear perturbation computa-
tion methods, which were based on artificial viscosity schemes (Henderson et al., 1974; Grishina,
1980; Dufour et al., 1984), in that it relies on a finite-volume formulation and explicit Godunov-
type schemes (Clarisse et al., 2004) for the hyperbolic reduced systems. The complementary
nonlinear/linear parabolic equations are classically handled using semi-implicit iterative/direct
methods. Despite the additional difficulties raised by the linear perturbation computations of the
symmetric flow discontinuities (i.e., shock-waves), the present numerical method is both reliable
and fairly accurate and, above all, is less expensive than 2D-numerical methods by, at least, two
orders of magnitude, given the spatially grid coarseness commonly advised for hydrodynamic in-
stability calculations (Holmes et al., 1999). This last feature may be profitably used to obtain
detailed descriptions of linear perturbation evolutions during ICF target implosions, as illustrated
bellow. The above described numerical methods are currently implemented in a linear perturbation
code, SILE

�
, dedicated mainly to ICF applications.

As an illustration of the capabilities of the proposed numerical methods, we show, in the following,
results obtained for a Laser MégaJoule direct-drive designed target (X. Fortin et al., 1999). For
this particular target, it turns out that a sufficiently accurate description of the mean flow requires
the use of a 1D grid with at least 3103 points (103 in each of the ablator, iced DT and gaseous DT
layers). Thanks to the numerical method, numerical diffusion is small, and, in particular, shock-
shock interactions are sharply described (see silde 13). Linear perturbation results were obtained
for a wide range of spherical harmonic degrees ( ��� 4, 8, 16, 128, 256, 512, 768). For each linear
perturbation computation, the spatial grid was adapted to ensure initially a minimum of at least
100 grid points per local wave length ( � 2πr ��� ) down to one half the radius of the gaseous DT
central layer. For example, this criterion resulted into the use of a 1D grid of 12146 points for the
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treatment of the harmonic degree ��� 768. Space-time evolutions of the target radius perturbations
are presented for ��� 16 and �	� 128. Comparing results obtained for �
� 16 and ��� 128 in
the ablator, we note that radius perturbation amplitude is smaller upstream the ablation zone than
downstream for small � -values while the opposite is true for large � s. The evolution of the radius
perturbation in the compressed ablator and iced DT layers can be decomposed into two stages:
(i) from the beginning of the shell irradiation up to the iced/gaseous DT interface-first shock front
interaction and (ii) from this interaction up to the end of the computation. During the first stage,
spatial structures appear on the radius perturbation with a characteristic length which decreases
with � . During the second stage, perturbation amplitude increases rapidly and uniformly, and
time oscillations appear at the iced/gaseous DT interface. The same kind of spatial structures as
observed in the iced DT layer during stage (i) appears dowstream of the shock wave as it converges
in the gaseous DT core. These fine scale structures are only visible for sufficiently dense spatial
grids, hence the importance of 1D grid refinements near the center of the target. To our knowledge,
such fine details of implosion flows have never been exhibited by multi-D simulations.
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Physical Modeling:

Usual hypotheses in ICF hydrodynamics:

7 inviscid and immiscible fluids;

7 one-dimensional mean flow.

Additional hypotheses:

3 single temperature (Ti = Te);

3 non linear heat conduction with fluids conductivi-

ties of the form:

κ = χρ−m T n, m ∈ R, n ∈ R
+;

3 laser energy deposition modeling at critical density;

3 Analytical equations of state

å perfect gas

å stiffened gas

p= P(ρ,T ) = ρ(γ−1)CvT︸ ︷︷ ︸
+pK (ρ),

perfect gas

E = E(ρ,T ) =
︷ ︸︸ ︷

Cv T +EK (ρ),

with :

EK (ρ) = E0 +
A

ρ

(

1+
1

γ−1

(

ρ

ρ0

)γ)

−CvT0

(

ρ

ρ0

)γ−1
−
A

ρ0

γ

γ−1

and

pK (ρ) = ρ2
d

dρ
EK (ρ).
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Problem formulation

. Flow decomposition =

planar or spherically symmetric mean flow + perturbations;

. Lagrangian description of mean flow and perturbations;

. Linear approximation of perturbations;

. Helmholtz decomposition of the transverse perturbation motion;

. Fourier or spherical harmonics decomposition of perturbations in the transverse

directions;

. Initial and boundary value problems for:

• mean flow (P) ;

• linear perturbation modal (Fourier or spherical harmonics) components (P̃).

3

Notations - Planar or spherical symmetry

symmetry planar spherical

symmetry exponent s 0 2

mean flow metric coordinate λ x r

A = λs 1 r2 (area)

Lagrangian coordinate η : dη = ρA dλ dη = ρdx dη = ρr2dr

modal component characteristic number w −k⊥
2

−`(`+1)

Ã = sλ(s−1)λ̃ 0 2rr̃
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Mean flow: system of equations





∂U

∂t
+

∂

∂η

{
fH + fP

}
= SH ,

∂λ

∂t
= vλ ,

(S )

with:

the conservative variable vector

U=




τ

vλ

e


 ,

the conservative variable flux vector

fH =




−vλ

p

pvλ


 ,

the symmetry term SH =




0

p
∂A

∂η

0


,

the heat conduction flux vector,

fP =




0

0

Ψλ


 ,

whereΨλ = −ρκ
∂T

∂η
.
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Linear perturbation modal components: system of equations





∂Ũ

∂t
+

∂

∂η

{
A

(
f̃H + f̃P

)
+ Ã (fH + fP)

}
+

∂

∂η

{
A (fH + fP)

}
Θ̃

= S̃H +SH Θ̃ +RH Ω̃ + Q̃P ,

∂̃λ

∂t
= ṽλ,

∂Θ̃

∂t
= Ω̃,

∂

∂t

(
A Ω̃

)
= w

(
A

∂p

∂η
λ̃ − τ p̃

)
,

(S̃ )

with:

Ũ the conservative-variable linear perturbation vector,

f̃H the 1D conservative-variable linear perturbation

flux vector , f̃H = (∂fH/∂U) Ũ,

Θ̃ the transverse-motion linear perturbation dilatation,

Ω̃ the transverse-motion linear perturbation expansion,

RH Ω̃ the transverse direction conservative-variable linear

perturbation flux vector,

f̃P the 1D heat-conduction linear perturbation flux vector,

Q̃P the transverse direction heat-conduction linear

perturbation flux vector,

S̃H the linear perturbation symmetry term,

RH = τ




1

0

−p


 ,

Q̃P =




0

0

w
τ
A

(
κ T̃+Ψλ λ̃

)




.
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Mean flow and perturbations — mathematical aspects

1 Systems (S ) and (S̃ ) are incompletely parabolica 1D-systems. In effect, (S ) and (S̃ )

are decomposed in (i) hyperbolic reduced systems (SH ) and (S̃H ) in the conservative

variable U and Ũ and (ii) parabolic scalar equations (EP) and (ẼP).

1 Both (S̃H ) and (ẼP) are merely linear systems for perturbations BUT with possibly

discontinuous coefficients.

1 In fact, main difficulty is raised by the linear perturbation hyperbolic system (S̃H ).

Any discontinuity of the flux-function fH (shock wave of the mean flow) will result

in a Dirac massbc for the modal component solution of (S̃H ).

1 One can only expect weak convergence of the modal components.

ý Specific methods are required for the numerical ap-

proximation of such hyperbolic systems.

a
B. Gustafsson SIAM J. Appl. Math. 1978.

b
G. A. Grishina USSR Academy of Sciences IAM 1980.
c
E. Godlewski and P.-A. Raviart Math. Comput. Simulation 1999.
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Mean flow and perturbations — numerical methods

1 2 or 3 stage splitting method a between hyperbolic systems (SH and S̃H ) and

parabolic equations (EP and ẼP).

Numerical method — hyperbolic problems

Earlier linear perturbation computation methods were based on artificial viscosity schemesbc. Because of the weak

convergence, linear perturbation numerical results may be extremely noisy and therefore useless for linear stability analyses.

Note that this defect can also arise in 2D/3D hydrodynamic instability simulations in the small amplitude regime. The key

points in devising linear perturbation computational methods are:

ý a mean flow computational method capable of producing accurate results without oscillations

in smooth parts of the flow.

ý a scheme for the linear perturbations which reflects the properties (hyperbolicity) of the linear

perturbation hyperbolic system S̃H . Such a scheme will introduce needed dissipation at mean

flow discontinuities (shock wave) and little or no dissipation in smooth parts of this flow.

Godunov type schemes are the best candidates for the 1st point and can be extended to fulfill the 2nd point.

a
G. Strang SIAM J. Numer. Anal. 1968

b
G. A. Grishina USSR Academy of Sciences IAM 1980.
c
D.B. Henderson, R.L. McCrory and R.L. Morse Phys. Rev. Let. 1974.
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Numerical method — hyperbolic problems

Integration of hyperbolic problems PH and P̃H :

1 finite-volume formulation;

1 explicit Godunov-type scheme a using an acoustic solver and its linearization. The

principles involved in the linearization of the gas dynamics solver are immediately applicable to more sophisticated fluid

models with zero entropy flux such as 2 temperature plasmas, 3 temperature radiative hydrodynamics,

magnetohydrodynamics, elastoplasticity, . . .

1 half-Riemann problem approach for time-dependent boundary conditions;

1 explicit 3 step Runge-Kutta time integrator b;

1 time step constraint for numerical stability:

∆t =
∆λ
c︸ ︷︷ ︸

/ F

(
w

A
∆λ2

)

︸ ︷︷ ︸
1D-CFL modal component weight

where F
(
w

A
∆λ2

)
=

w∆λ2/A�1

O

(√
w

A
∆λ2

)
.

a
J.-M. Clarisse, S. Jaouen and P.-A. Raviart J. Comp. Phys. 2004

b
C.-W. Shu and S. Osher J. Comp. Phys. 1988
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Numerical method — parabolic problems

Integration of parabolic problems PP and P̃P:

1 finite-difference discretisation;

1 implicit scheme (θ-scheme);

1 iterative method for PP;

1 direct method for P̃P;

1 time-dependent boundary conditions.

Numerical methods — SILEX code

These numerical methods are currently available in the linear perturbation code SILEX.

10
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Linear perturbation computation method

Features of the proposed method:

. Reduced computational cost (2 orders of magnitude) compared to 2D/3D computations;

. Numerical experimentsa show that the number of points per wave length N =
2π

∆λ

√
A

w
should

be ' 100 in order to obtain reasonably accurate resultsb;

. Tested against various configurations:

1 rippled shock problemc;

1 Richtmyer-Meshkov instability computationsa;

. Study of a self-similar planar ablation flowd.

. Current applications:

â Radiation induced Richtmyer-Meshkov instabilitye.

â ICF direct drive target implosion (see below).

a
J.-M. Clarisse, S. Jaouen and P.-A. Raviart J. Comp. Phys. 2004.

b
G. A. Grishina USSR Academy of Sciences IAM 1980, a value of N ≈ 10π is advised.
c
S. Jaouen, thesis 2001.

d
C. Boudesocque-Dubois and J.-M. Clarisse ECLIM 2002.
e
M. Legrand and J.-M. Clarisse, this conference.
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Numerical computations – LMJ targeta

R3

R2

R1

equation of state

[R2,R3] CH stiffened gas

[R1,R2] DT (cryogenic) stiffened gas

[0,R1] DT (gas) perfect gas

electronic heat conduction

(m= 0,n= 5/2)

– Direct drive

Laser energy deposition modeling at

critical density

80

60

40

20

0
86420

P
o
w
er

Time

Laser power law

a
B. Canaud ans X. Fortin IFSA 1999

12

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



Mean flow

Cell

T
im
e





CH 1000 cells

DT (cryogenic) 1000 cells

DT (gas) 1000 cells

Initial condition⇐⇒ equilibrium state

uniform pressure,

uniform fluid temperature.

Boundary condition

constant pressure.
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Perturbed flow

Initial perturbation

Modal boundary condition

0 pressure,

0 heat flux. 0.0

0.2

0.4

0.6

0.8

1.0

0 R1 R2R3

M
o
d
al
r-
p
o
si
ti
o
n

Initial r-position

Initial modal r-position

−1.2101

−1.0101

−8.0100

−6.0100

−4.0100

−2.0100

0.0100

2.0100

4.0100

86420

Time (ns)

CH-DT cryogenic interface perturbation

−4.0100

−3.0100

−2.0100

−1.0100

0.0100

1.0100

2.0100

3.0100

4.0100

86420

Time (ns)

DT cryogenic-DT gas interface perturbation

mode
4
8
16
128
256
512
768
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Prospects

` Application to other “exotic” hydrodynamics instabilities.

` Introduce more sophisticated physical fluid models: 3 temperature radiative

hydrodynamics.

` . . .
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