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Correlation effects play an important role in the description of turbulent transport. The present 

paper considers the influence of drift flow and time-dependence effects on the passive scalar 

behavior in the framework of the percolation approach. The renormalization method of a 

small parameter in continuum percolation models is reviewed. It is suggested to modify the 

renormalization condition of the small parameter of the percolation model in accordance with 

additional external influences superimposed on the system. This approach makes it possible to 

consider both parameters: the characteristic drift velocity Ud and the characteristic 

perturbation frequency ω  simultaneously. The effective diffusion coefficient 7/1ω∝effD  

satisfactory describes the low-frequency region ω , where the long-range correlation effects 

play a significant role. The character of the dependence of Deff on the drift flow amplitude Ud 

in different regimes is analyzed.   

 

 

1.  Introduction 
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The analysis of correlation effects plays an important role in the description of turbulent 

transport. In spite of considerable progress attained in this field of research [1-6], the problem 

still awaits its complete solution. One of the important directions is obtaining scaling laws that 

characterize the turbulent diffusion of a passive scalar. In spite of what the formal quasi-linear 

approach [1-4] permits expressing the diffusivity through the velocity correlation function, the 

conventional diffusive equation cannot adequately describe anomalous transport mechanisms. 

However, in the framework of generalized probabilistic models (such as continuum time 

random walk (CTRW), Levy flight approach etc.) it is possible to describe the essentially non-

Markovian character of transport in terms of fractal differential equations and the Hurst 

exponent H [4-6]. Thus, the continuum time random walk approach allows description of both 

superdiffusion (H>1/2) and subdiffusion (H<1/2) regimes on the basis of the special 

approximations of correlation functions. A variety of forms of turbulent transport requires not 

only special description methods, but also an analysis of general mechanisms for different 

turbulence types. One such mechanism is the percolation transport [5]. Its description is based 

on the idea of scaling representation of the correlation scale, borrowed from theory of phase 

transitions and critical phenomena [4-6]. It was suggested [8] that we could explain 

anomalous transport in two-dimensional cases in terms of the percolation threshold. The 

percolation model implies that there exists a percolation (fractal) streamline in the two-

dimensional random flow under consideration, which embraces almost the whole plane. The 

convective transport of the passive scalar along this streamline defines the transport character 

in the system under analysis [5].  The percolation approach looks very attractive because it 

gives the simple and, at same time, universal model of behavior related to strong correlation 

effects.  The percolation approach in fact gives the possibility to effectively realize the scaling 
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representation of correlation scale and to obtain dependences of transport coefficients on 

parameters characterizing common properties of a flow (velocity scale V0, spatial scale λ , 

“seed” diffusion D0 etc.). Thus, in the framework of the percolation model the interesting 

results [5,9,10] were obtained that show the possibilities of the transition from the quasi-linear 

character ( the Taylor formula) of dependence of the effective diffusion coefficient on the 

velocity scale  
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Here, V0 is the characteristic velocity, τ  is the correlation time, λ  is the characteristic size of 

structures, ω  is the characteristic frequency of perturbations, Ku
λω

0V
≈  is the Kubo number, 

and 3/4=ν  is the percolation exponent [4,5].  Note that the result (2) agrees well with 

numerical simulations that correspond to the dependence of the effective diffusion coefficient 

on the perturbation amplitude with the interval of exponents 0,6-0,8 [11-13]. Such a behavior 

also describes the alteration of regimes with the increase of perturbation amplitude: the quasi-

linear regime with 22
0 KuVDeff ∝∝ , then the linear dependence KuVDeff ∝∝ 0 , which 

corresponds to the convective cells model [2-3], and the regime with the slower dependence 

on V0 than the linear one [2-5]. The analysis of transport in terms of the Kubo number is very 

important because it gives the possibility to use the correlation theory. For example the 

dimensionless number 
⊥∆

= //Lb
R o

m  introduced in [8] to describe a stochastic magnetic field, is 

the direct analogy with the Kubo number. Here, b0 is the relative amplitude of perturbations of 
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magnetic field, L// is the longitudinal correlation length, and ⊥∆  is the transverse correlation 

size. Therefore the magnetic diffusion coefficient Dm has the analogous character of the 

dependence on perturbation amplitude b0; but instead of the Kubo number, it is used the 

magnetic Kubo number Rm. If Rm<<1 then we deal with the quasi-linear regime [1-4] 

2
0bDm ∝ . When Ku 1≤ , then we have the Kadomtsev-Pogutse regime [8] with 0bDm ∝ . The 

percolation limit was considered in [5] on the basis of the time-dependent model (2) 

10/7
0bDm ∝ .  

The notion of nature of stochastic layer ∆  corresponding to percolation (fractal) 

streamline is the foundation of percolation models. The simplest and, at the same time, most 

“universal” model is the steady one. For the steady case with initial (background) diffusivity 

D0, the authors of Ref. [9] obtained the percolation expression in the form: 

  13
10

0

3
1

0

13
3

0

0
0

1 V
Pe

V
V

D
VDeff ∝





≈





≈

+ν
λ

λ
λ .                              (3) 

Here Pe
0

0

D
Vλ

≈  is the Peclet number. This result also differs significantly from convective 

cells estimate, ∆∝ 0VDeff  [2-3]. The consideration of more complex situations (time-

dependence, drift effects etc.) is based upon analyzing mechanisms responsible for the 

“reorganization” of a stochastic layer.  

The present paper considers the influence of drift flows and time-dependence effects 

on the turbulent transport in the framework of the percolation model. The author of Ref. [15] 

suggested using the percolation approach to interpret experimental data characterizing 

neoclassical transport in tokamak. The conventional Hamiltonian function has the form:  

)sincos(0 θθ yxUHH d ++= .                                         (4) 
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Here, H0 is the main fraction of Hamiltonian function; Ud is the drift velocity; and θ  is the 

poloidal angle. In the steady case, the percolation model agrees well with the experimental 

data. The complexity of the simultaneous incorporation of several factors often leads to the 

consideration of time-dependence on the basis only the quasi-linear expression. The 

percolation method suggested in [9,10] is one of important approaches, which make it 

possible to analyze the long-range correlation effects that cannot be described in terms of the 

quasi-linear approach. In the present paper, we concentrate our attention on scaling arguments 

that play the very important role in obtaining estimates of transport effects. In the framework 

of the mean field theory, of course, many important problems [1-3,6-7] will be not considered. 

However, the aim of this paper is to establish the character of dependence of transport 

coefficient on such parameters as fluctuations amplitude, characteristic size, characteristic 

time etc. The considered approach is especially effective just for these purposes. 

 

2.  Percolation method and transport 

 

A physically clear presentation of fundamental ideas of the percolation theory and the 

fractal conception can be found in [4]. In the context of this paper, the streamlines of the two-

dimensional random flow ),( yxΨ=Ψ  are considered as the coastlines in the hilly landscape 

flooded by water. It is expected that there is a sharp transition from separated lakes on a 

boundless land to individual islands in the infinity ocean. The percolation theory requires the 

existence of at least one coastline of infinite length.  This length was represented by the 

scaling, βε
ε 1)( ∝L . Here, β  is the fractal exponent, and ε  is a small dimensionless quantity 

characterizing the degree of deviation of the system from the critical state (the percolation 
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threshold): 
0V

h

λ
ε ≈ , where h  is the value of the streamline function ),( yxΨ=Ψ  near the 

percolation threshold, λ  is the characteristic scale, and 0V  is the characteristic velocity of the 

flow. The expression for )(εL  corresponds exactly to the fractal representation of the curve 

length. From the formal standpoint [4-6] the length of the “very intricate curve” (the fractal 

curve) )(δL  can be rewritten in the form, )(δδ NL ≈ , 
FdN

δ
δ 1)( ∝ . In this fractal approach 

the full length L  is approximated by the small segments of the size δ , )(δN  is the number of 

these segments, which are necessary for such an approximation, and Fd  is the fractal 

dimensionality of the curve [4-6]. In the framework of the conventional representation, we 

have to use the value dF=d=1. However, in this case the drawbacks of the conventional 

method of length measurement by the “yardstick” (ruler) are conserved. Mandelbrot 

considered a problem of the measurement of tortuous seacoast length in which the increase of 

measurement accuracy  (the decrease of the value δ ) leads to the growth of the value )(δN  

(dF>1). From the formal standpoint, this approach yields, ∞→≈
→0

)()(
δ

δδδ NL . This 

means that such a fractal line embraces almost the full plane.  

To describe the effects related to the considerable increase of transport coefficients, it 

is not sufficient to consider the fractal presentation of a streamline only. Moreover, the fractal 

character of the trajectory sometimes leads to slower diffusion (subdiffusion). Therefore, it is 

necessary to introduce another important value. In the percolation theory the correlation length 

)(εa  is the main magnitude characterizing spatial scales of the system, which is located near 

the percolation threshold 0→ε : 

ν
ε

λ=a               
hDaaL 





≈
λ

λ)( .                                        (5) 
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Here, ν =4/3 and Dh =1+
ν
1  are the percolation exponents that are exactly calculated for the 

two-dimensional case [4,5,14], λ  is the geometric characteristic scale, and L(a) is the length 

of the percolation streamline, which also expressed through the small parameter 0→ε . Thus, 

the idea of long-range correlations was realized in the percolation approach [4-5]. However, 

there is a problem, since the diffusion coefficient is directly related to the conventional 

expression for the correlation length: 
τ

2
COR

C
l

D ≈ . Here, τ  is the correlation time. In the case 

under consideration, estimates yield ∞→≈ →0)( εεalCOR .  For this reason, perhaps, 

Kadomtsev and Pogutse based their consideration on “diffusion renormalization” of the quasi-

linear equations [8]. However, in this approach the percolation character of correlation effects 

was lost. This is not surprising that in the framework of classical diffusion equations we 

cannot use the percolation exponents Fd,ν .  

To develop the percolation approach, it is necessary to take into account that the 

percolation cluster occupies only a small fraction of the space. Therefore, the value 

)()( εε ∞≈ PDD Ceff , can be the estimate of the effective diffusion coefficient. Here, DC  is the 

diffusion coefficient that corresponds to transport on the percolation cluster; and the value 

)(ε∞P  defines the fraction of the space that is occupied by the percolation cluster. In the 

continuum percolation theory [4,5,14] a use is made of the scaling representations for )(ε∞P  

in the form 

         
)()(

)()()( 2 ε
λ

ε
εεε

aa
LP ≈∆≈∞ .                                               (6) 

Here, ∆  is the width of the stochastic layer. Now we can calculate the diffusion coefficient 

that based on the estimate of the finite correlation length a  
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       λ
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One can see that in percolation models of turbulent diffusion the key problem is to determine 

the small parameter ε  and to express the correlation time τ  through characteristic flow 

parameters. Thus for the steady model [9] the small parameter is defined by  

3
1

*
1 +





=

ν
ε

Pe
  .                                                    (8) 

For the time-dependent perturbations [10] the small parameter is given by the expression  

2
1

*
1 +





≈

ν
ε

Ku
.                                                       (9) 

These calculations (that are based on the renormalization method) will be considered bellow. 

 

3. Percolation and renormalization of the small parameter 

 

The important aspect of the percolation approach is the method to obtain the small parameter 

*ε  that characterizes the closeness of a system to a percolation threshold, since in order to 

solve real physical problems the condition 0→ε  looks too abstract. In the percolation 

models of turbulent diffusion, the key problem is to determine a small parameter 0ε  and to 

find an adequate renormalization condition for *ε . Thus, the correlation length is one of the 

most important values describing transport. However, in the system of the finite size L0 we 

cannot consider the infinite value ∞→→ )0(εa . Here, it is relevant to introduce a new small 

“renormalization” parameter *ε  [4] as the value that provides the condition 0* )( La ≈ε .  

Simplest calculations yield: 
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This result can be interpreted in the framework of percolation experiments with finite size 

samples. In these conditions, the percolation threshold arises when the value *ε  is slightly 

differed from zero and disposes in some ε∆  diapason. The estimate obtained for *ε  can be 

considered as the characteristic width of this diapason *εε ≈∆ . Actually we deal with the 

small parameter 1/ 00 <<≈ Lλε , which describes the real physical system with the 

characteristic scales L0 and λ . Upon “renormalization” we obtain the new percolation 

parameter νεεε /1
0* ≈≈∆ . It is natural that the value ε∆  decreases if the system size L0 

increases.  

Another typical example of the renormalization small parameter consists of the 

consideration of percolation in models of graded type [16]. The graded character of the model 

corresponds to the assumption that the system undergoes a small external influence, which 

does not in general destroy the percolation character of the system behavior, but it can 

essentially change its properties. First, we will consider this method from the formal point of 

view. Let us introduce a parameter 0ε  characterizing the smallness of influence.  In contrast to 

the renormalization, which uses the dependence of a percolation parameter on a system size 

*0 )( εεε ≈∆≈∆ L , here, we will deal with the spatial dependence that is related to the graded 

character of the problem )(xεε ≈ . From the dimensional consideration, we can obtain the 

expression that characterizes uncertainty of choice of the small parameter in these conditions 

)()(' ** εεεε ax≈∆≈ . Then simple calculations yield  

vv ax
a

)]()('[
1)(

**
* εε

λ
ε

λε ≈≈ .                                 (11) 
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After the dimensional estimate in the form 
λ
εε 0)(' ≈x , we obtain the Trugman 

renormalization condition for the correlation scale 

v
vva
+
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10
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1)(
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Here the value  

01
1

0* εεε >>= +v                                                      (13) 

is the new small percolation parameter. Note, that the direct use of the value 0ε  as a parameter 

in the percolation dependences is not correct, since the value 0ε  characterizes the destructive 

influence of superimposed perturbation and not a degree of departure of the system from the 

percolation threshold. 

 This method looks quite formal, but renormalization (13) was repeatedly used to 

obtain the information about the critical exponents that describe the hull of a percolation 

cluster, to analyze transport in a system with shear flows, and to consider models of multiscale 

percolation. In the framework of the graded percolation the author of Ref. [15] considered a 

problem of influence of small drift velocity dU  on the fractal topology of streamlines  

dUVV += 0       ,           0VU d <<   .                                     (14) 

The simplest way for the alteration of the small parameter is the use of the value 

0
0* V

U d=≈ εε .   However, in this approach the fractal character of percolation streamlines is 

completely lost. Yushmanov suggested the use of the following dimensional estimate for the 

drift velocity  

)(
)(
)( aPaU d ∞=

ετ
ε       ,    

ν
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−
≈)(a      , 
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The expression suggested for the steady case, aP /λ≈∞ , was used for ∞P . Simple 

calculations permit obtaining the parametric dependence for the renormalized small parameter 

*ε  on the flow parameters 0V  and dU , 

ν
ε

+







=

1
1

0
* V

U d      , where 3/4=ν  .                                     (16) 

It is easy to see that this expression coincides completely with the Trugman result (13) and 

can be interpreted in terms of the streamline function Ψ ,  

)()(
01

ε
ε

ε aa
U d

Ψ
≈

Ψ
≈   .                                               (17) 

Here we deal with the conditions: 001 Vλ≈Ψ<<Ψ     and    λε >>)(a .  

  

4. Temporal scales and renormalization 

 

To calculate the effective diffusion coefficient Deff it is necessary to obtain the expression for 

the correlation time τ  (7). Moreover, the consideration of characteristic times permits finding 

the equation for the percolation parameter *ε . For the purposes of this paper we need to treat 

the characteristic times balance that underlies the calculation method [9-10]. Thus, assuming 

that in the steady case the particle motion time along the percolation streamline 
0V

L
B ≈τ  has 

to be the same order as the characteristic diffusion time 
0

2

DD
∆≈τ  of the particle escape from 

the percolation stochastic layer of the width ∆ , the authors of Refs. [9] obtained the 

expression: 

0

*

0

*
2 )()(

V
L

D
εε

=
∆ .                                                 (18) 
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In fact this representation was repeatedly used in the consideration of transport in systems 

with the convective cells [17-19]. Expression (18) is based upon the particle balance in the 

cell of the size λ  

λ
nVnD 020 ≈

∆
.                                                     (19) 

Here n is the passive scalar density. Consideration of the balance between convective 

transport in the narrow layer of width ∆  and the diffusive flow of particle leaving the cell, 

leads to expression (18). In the percolation case the characteristic size λ  is replaced by the 

length of the percolation streamline L.  

To obtain the equation that characterizes the value *ε  it is necessary to introduce the 

dependence )( *ε∆=∆ . The authors of Refs. [9,20] suggested to use the following simplest 

definition: 

** )( λεε =∆ .                                                          (20) 

Simple calculations lead to expression (3) and the estimate for Deff in the form, 

*00 )( ελε VVDeff ≈∆≈ ∗ . Upon the substitution of (20) in (18) one obtains the new small 

parameter *ε  in the form (8) and the effective diffusivity in the form (3). It should be noted 

that the small parameter *ε  is not infinitesimal quantity as in the classical percolation theory. 

Therefore the width of the percolation (stochastic) layer depends on the parameters of model 

V0, λ , D0. 

 The value *ε  has significant physical interpretation in the terms of the stream function 

Ψ  that describes the velocity field in the framework of the two-dimensional approach. The 

values of amplitude of the stream function Ψ  corresponding to the percolation stochastic 

layer ∆  lie in the interval  

*0ελV≈∆Ψ .                                                                 (21) 
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Then the estimate of the characteristic diffusion time Dτ  can be rewritten in the form  

Ψ

∆Ψ≈∆Ψ≈
DDVD

2

0
2

0

2 )()(τ .                                                      (22) 

Here, ΨD  characterizes the “diffusion of streamlines”. Moreover, for two-dimensional 

incompressible flows the formulation of the problem in terms of the stream function is 

equivalent to the Hamilton formulation. This allows consideration of the equation for the 

small percolation parameter in the form: 

0

*
2

* )()(
V

L
D

H

H

εε
≈

∆ .                                              (23) 

Here H∆  is the diapason of the Hamiltonian alteration in the stochastic layer and DH 

characterizes corresponding diffusion process. 

The considered estimate makes it possible to use the Trugman expression to analyze 

the force line distortion mechanism by drift flows    

( )
COR

d

COR

aUD
τ

ε
τ

2
*

22 )(
≈∆Ψ≈Ψ    .                                            (24) 

Here CORτ  is the correlation time. Now we deal with the new parameter Ud to treat transport 

effects in the framework of the percolation approach. The simplest estimate is the expression 

for the effective diffusion coefficient [5,15] 

7
31
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0
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d
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+
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ν
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The author of Ref. [15] suggested using this result to interpret experimental results 

characterizing neoclassical transport in tokamaks. The experimental data considered in [15] 

are satisfactory described by the scaling 7
3

deff UD ∝  that corresponds to the Trugman model 

[16].  

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



 14 

The next step is the incorporation of the time-dependence effects that play the 

significant role in the analysis of transport processes. Often the complexity of simultaneous 

incorporation of several factors leads to the consideration of time-dependence on the basis 

only the quasi-linear expression (1). The percolation method suggested in [9-10,21-25] is 

important approach that makes it possible to analyze the long-range correlation effects, which 

cannot be described in the framework of the quasi-linear approach. In the next parts we will 

consider possible modifications of equations for the small parameter (22), (23), (24) for time-

dependent drift flows. 

 

5.  Non-quasi-linear effects and percolation 

 

The analysis of the steady percolation model is based on the supposition of the presence of 

“seed” diffusion D0 in the stochastic (percolation) layer ∆  [26]. New physical situations in 

which the stochastic layer nature is related to external influences (such as time-dependence, 

drift flows etc.), could be analyzed by means of modification of the equation for the 

percolation small parameter before studied. The typical example is the consideration of the 

influence of time-dependent effects on the effective transport. Thus, the quasi-linear estimate 

[1-4] can be used for flows with the characteristic frequency 
0

1
T

≈ω in the form:   

ω

2
0

0

2

)(
2
1 V

dttC
dt

d
Deff ≈=

∆
= ∫

∞

.                                                (26) 

Here, С(t) is the autocorrelation function of velocity and 2∆  is the mean square 

displacement. However, this approach does not mirror the physical essence of processes for 

cases of small frequencies (the low-frequency limit), when the particle path  
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ω
0

00
VTVl ≈≈                                                               (27) 

during the time Т0 can be essentially greater than the characteristic spatial scale λ . It is 

natural that in this case “long” streamlines play an important role. To describe such models 

the authors of [10] suggested using the percolation approach. For the simplest monocsale 

model [10] the equation for the percolation parameter *ε  was offered in the form: 

ω
εεετ *

0*
0

* )(
=≈≈ T

V
L

B    .                                          (28) 

This implies that the ballistic motion time of the particle along the percolation streamline, 

which is approximately the lifetime of this streamline, is much less than the characteristic time 

T0 (which is the time of changing entire flow pattern). At the same time, this corresponds to 

the correlation scale 
ωω

εε 002
*

2
*

VlVla =<<≈≈ . Upon the solution of this algebraic equation 

for *ε , relationship (2) was found 

 
2

1

0**
1),,(

+





==

ν
ωλεε

Ku
V                                                         (29) 

that makes it possible to obtain the estimate of the effective diffusion coefficient (7) in 

accordance with the ideas developed in Ref. [9] about the linear dependence of Deff  on the 

stochastic layer width ∆  

2
1

0**0 )( +∝≈∆≈ νωλεε VVDeff .                                         (30) 

This expression differs significantly from the quasi-linear one. It is important to note that in 

the analyzed model of time-dependent perturbations [10,20] the following condition was used: 

( )
0

2

0* T
D

T DB <∆Ψ≈<≈
Ψ

τετ    .                                         (31) 
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Calculations yield the estimate of the characteristic diffusion time in which the frequency ω  

enters as a parameter  

( ) 2
2

0

2

00

2
0

0
2

0

2
0*

+
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νλωλλε
τ

VVD
V

DV
V

D   .                                     (32) 

Non-quasi-linear character of the dependence of the characteristic time on the perturbation 

frequency )2/(2 +∝ νωτ D  leads to considerable changes of transport estimates. One of the 

important examples is the transport in a stochastic magnetic field that was considered in [23-

24]. Unfortunately, the value of seed diffusion D0 that was used in expression (32) is too 

abstract. New physical situations, where time-dependent effects have essential influence on 

the transport character, can be analyzed by way of more detailed consideration of mechanisms, 

which are responsible for processes in the stochastic layer. Actually, it is necessary to examine 

the alteration of the character of percolation transport under external influence.  

 

6. Transport in the system with drift flows and time-dependence effects 

 

The author of Ref. [15] considered the Hamiltonian function accounting for the simultaneous 

influence of drift flows and time-dependence effects 

))(sin)(cos(
),()(),(~

),(
0

// tytxU
B

trAtvtrc
trH d θθ

ϕ
++

+
= ⊥⊥

⊥ .                (33) 

Here, ϕ~  and А characterize the fluctuation amplitudes of electric and magnetic potentials, В0  

is the tore magnetic field, and v//  is the longitudinal velocity. As was mentioned above, the 

simplest estimate for time-dependent effects is the quasi-linear expression (1). The author of 

Ref. [15] kept the Trugman result for the small percolation parameter  
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ν
ε

+







=

1
1

0
* V

U d                                                 (34) 

 and transformed the expression for  Deff  (7) to the quasi-linear form: 

ν

ε
ττ

τ 
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∞
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d
d

eff U
P
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The correlation estimate (15) of the drift velocity 
τ
∞≈

aPU d  and the approximation 

)( *ε
λ

a
P ≈∞  of the space fraction occupied by percolation streamlines (6) were used here. 

Applying the substitution of 
ω

τ 1≈ , we obtain the Yushmanov result [15,27]: 

ωωεω

ν
ν

11 7
4

0
7

107
4

0
21

0

2

VU
U
VUU

D d
d

dd
eff ∝





≈





≈

+
 .                        (36) 

Obviously, that the substitution of 
ω

τ 1≈  and the use of the small parameter (16) 

corresponding to the steady model is fairly rough approximation. From the standpoint of the 

dependence of Deff on the perturbation amplitude Ud, this expression corresponds to the 

transfer from the quasi-linear regime with 2
deff UD ∝  to the linear one with deff UD ∝ . 

Moreover the estimates under consideration for the conventional (without drift) time-

dependent case [10] yield the expression for the characteristic time Dτ   

( ) 10
6

2
*

0
2

0

2

)( ωωετ ∝≈∆Ψ≈
DVD  ,                                          (37) 

that differs significantly from the quasi-linear result (1). Following the methods developed by 

Isichenko et.al [9], we can find the equation for the small parameter *ε  that incorporates the 

perturbation frequency ω . Consider the balance of characteristic times by means of using (24) 
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( )
0

22
0* )()(

V
L

DD
V ελε

≈∆Ψ≈
ΨΨ

  .                                     (38) 

This is fairly common representation that characterizes transport in the stochastic layer. Let us 

express the value ΨD  in the dimensional form, which mirrors the certain character of external 

influences (drift and time-dependence) 

ωεω 222 )()( aUD d≈∆Ψ≈Ψ    .                                       (39) 

Note that the expression for ∆Ψ  is similar to the Trugman result (16). It is naturally, since 

)(εa  characterizes correlation properties of a system. However here we do not use the 

Trugman small parameter *ε  (16). The new value of the percolation parameter that 

characterizes the system in the conditions of simultaneous influence of both drift flows and 

time-dependence effects, will be obtained as a result of solution of the algebraic equation:  

( )
( ) 0

*
2

*

2
0* )(
)( V

L
aU

V

d

ε
ωε

λε
≈   .                                            (40) 

In fact we have renormalized the value 0
2

0 DVD ≈Ψ  in expression (22) in accordance with the 

mechanisms distorting streamlines (the drift flow with characteristic velocity Ud and temporal 

fluctuations with the frequency ω ). The new expression for the small parameter has the form: 

7
1

7
3

0
7
2

)1(3
1

)1(3
2

0
*

1 ωε
νν −++

∝












≈ VU

KuV
U

d
d    .                             (41)  

Here we simultaneously use two dimensionless complexes: 
0

0 V
U d=ε  and the Kubo number 

Ku=
λω

0V . The corresponding expression for the effective diffusion coefficient is given by 

7
1

7
4

0
7
2)1(3

1

0

)1(3
2

0
*0 )( ωλωε

νν
VU

VV
U

VD d
d

eff ∝











≈∆≈

++
   .                        (42)  

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



 19 

This result corresponds to the low-frequency limit, where the effective diffusion coefficient 

grows with ω  that differs significantly from the quasi-linear dependence 
ω
1∝effD . This is 

the main fact in the framework of the percolation approach to the description of the low-

frequency perturbations [10]. As was mentioned in the introduction such a form of 

dependence makes it possible to adequately describe the long-range correlation effects [4,5]. 

In the case under consideration the Trugman regime with  

ν
λ

+







≈

1
1

0
0 V

U
VD d

eff                                                    (43) 

passes to the low-frequency regime, where 

7
1

7
4

07
2

ωVUD deff ∝                                                     (44) 

in the region 
λ

ω dU
≈ . Then in the region 

1
0

+







≈

ν
ν

λ
ω

d

d

U
VU

 the character of the dependence is 

altered in accordance with [15]  

7
4

0
2







≈

d

d
eff U

VU
D

ω
.                                            (45)  

Calculations yield the estimate for the characteristic time: 

( )
21/112

*

2
*

2 1
)(
)(

ωωε
ωετ ≈≈∆Ψ≈

Ψ aDD .                                   (46) 

Note that the authors of Ref. [27] carried out detailed analysis of neoclassical transport on the 

basis of the percolation model and pointed out the absence of correct result for the low-

frequency case. Moreover they suggested the upper estimate for the dependence of the 

effective diffusion coefficient on frequency  

2
1

ω∝effD .                                                       (47) 
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Indeed formula (42) suggested in the present paper satisfies this criterion.  

The consideration of the dependence Deff  on the amplitude of drift flow velocity Ud 

also points out the correct character of change of regimes [5]. Thus, the quasi-linear regime 

[1-3] is described by the steeper dependence 7/10
deff UD ∝  then the low-frequency regime with 

7/2
deff UD ∝ . The dependence of Deff  on the characteristic scale  of the velocity V0 is the same 

as in all the regimes with drift flow. 

In the framework of the percolation approach there is another good example. The 

author of Refs. [23,24] considered the alteration of transport regime depending on the value 

ω  in the case of time-dependent perturbations of magnetic field Bδ . In spite of that the 

estimate considered in [23,24] has fairly rough (dimensional) character tBtB δωδωδ 0),( ≈ , 

this result agrees well with the model representation of transition for the value Ku≈1 from 

low-frequency regime, where Deff  increases with ω , to the quasi-linear regime 
ω
1∝effD .  

 

7.  Conclusions 

 

In the present paper we have considered the influence of drift flow and time-dependence 

effects on the passive scalar behavior in the framework of the percolation approach. The 

renormalization method of a small parameter in continuum percolation models is reviewed.  It 

is shown that the estimate 
ω

7/10
d

eff
U

D ≈  suggested in [15,27] has quasi-linear character and it 

is based on using the Trugman results [16] for the steady case. Following the methods 

developed in [9,10], it is offered to modify the renormalization condition of the small 

parameter of the percolation model  
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0

2 )()(
V

L
DCOR

ετ ≈∆Ψ≈
Ψ

 

in accordance with an additional external influences superimposed on the system. This 

approach makes it possible to consider both parameters: the characteristic drift velocity Ud 

and the characteristic perturbation frequency ω  simultaneously. However in contrast to [15], 

the effective diffusion coefficient 7/1ω∝effD  adequately describes the low-frequency region 

ω , in which the long-range correlation effects play a significant role. The changes of regimes 

with the alterations of perturbations frequency ω  were considered. The character of the 

dependence of Deff on the drift flow amplitude Ud in different regimes is treated.   

Note, that the influence of the small drift velocity is also important for the analysis of 

transport in systems with intrinsic trapping [28-30]. Thus, in recent papers [28-32] the 

possibilities to use model approximations of velocity field were discussed. It was shown that 

anisotropy significantly complicates an interpretation of the results due to the presence of 

numerous regimes. Moreover, the study of multiscale drift flows [33-34] also shows non-

diffusion character of transport [5,21-22] and has to be related to the detail consideration of 

correlation functions that considerably complicates the analysis.   
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