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A second order closure engineering model for multimaterial variable-density 
turbulent flows is proposed. Closure hypothesis are based on the analogy to that 
for incompressible shear flows and stratified boundary layers with small density 
change. 

A short-cut variant of the model with algebraic equations for turbulent variables 
is formulated in local equilibrium approximation. In the frame of algebraic 
model the problem of turbulent mixing layer development on the interface 
between two fluids is considered for small density drop. Estimations of empiric 
constants values are fulfilled using analytical solutions received and 
experimental data on shear and buoyant mixing on the interface and atmospheric 
surface layer observed data also. 

The model is implemented in 1D hydrodynamic code MUZA. Raleigh-Tailor 
turbulence test simulations approved the model adequacy. Numerical 
optimization of empiric constants for arbitrary density drops gives the values 
close to the estimated ones. 
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SECOND ORDER CLOSURE TURBULENCE MODEL FORMULATION 

The initial set of Navier-Stokes equations for compressible, variable-
density, multimaterial flow is: 
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2 .   (molecular viscous stress tensor) 

 
 Ensemble averaging using combination of  

Reynolds decomposition   u u u= + ′ , ′ =u 0 

and Favre (mass-weighted) 
decomposition     u u u= + ′′ , ρ ′′ =u 0  
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produce mean flow equations [1]: 
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One can derive full set of unclosed equations for second-order correlations [1]: 
 

ki cu ′′′′ρ  – turbulent mass fraction flux, 

ji uu ′′′′ρ  – Reynolds stress tensor (turbulent momentum flux), 

eui ′′′′ρ   – turbulent internal energy flux (heat flux), 

ρ
′ρ′
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i
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Closure assumptions we used are based on the analogy to that usually 
applied to model incompressible shear flows [2], shear and stratified 
(convective) boundary layers [3]. That guarantees the model validity in the limit 
case of constant density or small density change (when Boussinesq convective 
approximation is good). 

We were also motivated to minimize complexity and the number of 
empirical constants. 
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TURBULENCE MODEL EQUATIONS 

Equation for Reynolds stress jiuu ′′′′ρ : 
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Equation for turbulent mass flux iu ′′ρ− : 
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Equation for density self-correlation 
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kuq 22 =′′= α  – turbulent velocity scale, 
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For mass fraction turbulent flux and internal energy turbulent flux we use 
simple gradient type approximation: 
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To complete the model it is necessary to add pair equations (or formulas) for 
governing dimensional variables: 
 

lq,  or ε,k . 
 
We use traditional  and  equations [4]: k ε
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1D CODE MUZA 

The model described above was implemented in 1D code MUZA, solving 
the following equations in Lagrange coordinates for plane, cylindrical and 
spherical geometry (we miss overbars below). 
 
Mean flow equations: 
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Mass flux associated velocity ua ′′−= : 
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Density self-correlation: 
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Turbulent kinetic energy: 
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 7

Turbulent kinetic energy components: 
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For plane and spherical case: ( )132 2
1 kkkk −== . 

 
Turbulent kinetic energy dissipation rate: 
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It is possible transition to the first order closure k-ε model applying  
 
gradient approximation for mass flux 
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321 kkk ==
3
k

= . 

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



Turbulence variable Diffusion Dissipation 
Interaction 

with pressure 
fluctuations 

Shear 
production 

Buoyant 
production 

Reynolds stress kC  1B  3211 ,,, CCCA  -  -
Turbulent mass flux uCρ   2A  -  -
Density self-correlation bC  2B  -   - -
Mass fraction flux cC  -    - - -
Internal energy flux eC  -    - - -
Turbulent energy dissipation εC  ε2C  - ε1C  ε3C  

 8

 
 
 
 
TABLE 1.  THE LIST OF EMPIRICAL CONSTANTS USED IN THE TURBULENCE MODEL EQUATIONS AND 

PHYSICAL PROCESSES THEY GOVERN 

The problem is to estimate these empirical constants. 
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ALGEBRAIC MODEL FOR TURBULENCE VARIABLES 

By neglecting convective and diffusion terms (local equilibrium 
approximation) the turbulence equations on page 4 reduce to the following 
algebraic set: 
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Note that the classical first order k -ε  model [4] based on Boussinesq 
gradient hypothesis is a particular case of algebraic model: 
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FREE TURBULENT MIXING LAYER ON THE INTERFACE OF TWO 
FLUIDS 

 Our goal is to estimate empiric constants of the model describing 
turbulent mixing induced by Rayleigh-Taylor and Kelvin-Helmgoltz 
instabilities. 

Consider the plane horizontally uniform turbulent mixing layer on the 
interface between two fluids of different density and different horizontal 
velocity in vertical gravitational field g  (see figure below). 

 

ρ1 

ρ2 

g 

U1

U2

x 

z 

mixing layer

 
We apply algebraic model to describe evolution of mixing layer in the 

case of incompressible fluids and small density drop at the interface. 
 
 We shall use more convenient notations (accepted in geophysics [3]): 

{ } ( )WVUui ,,=   – Favre-mean velocity components, 

{ } ( )wvuui ,,=′′   – turbulent flux velocity components, 

{ } ( )222 ,, wvuuu ii =′′′′  – velocity fluctuations components (turbulent energy 

components), 

{ } ( vwuwuvuu ji ,,=′′′′ )  – shear stress components. 
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ALGEBRAIC MODEL FOR INCOMPRESSIBLE FLUIDS AND SMALL 
DENSITY DROP AT THE INTERFACE 

 For horizontally uniform flow 0==WV , 0=v , 0== vwuv  and all 
variables are the functions of vertical coordinate  only. z
 
 Mean flow equations and algebraic turbulent equations may now be 
written as: 
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111 2ˆ CAC = ,     ( )212 12ˆ CAC −= ,     ( )313 12ˆ CAC −= . 
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 Making a formal substitution 
 

z
lqKw

∂
∂ρ

ρ
= ρ

1     and    
z
UlqKwu u ∂
∂

−=  

 
after considerable algebra all turbulent variables can be defined as a functions of 

density and velocity gradients 
1
ρ
∂ρ
∂z

, 
∂
∂
U
z

: 

 

( ) ( ) ( ) ( )
z

gl
R

R
RKB

z
UlRRKBq

f

f
fffu ∂

∂ρ
ρ

−
⋅≡⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−⋅= ρ
2

1

2
2

1
2 1

1 , 

( )
f

f

R
RCC

Bq

u

−

+
+=

1

ˆˆ21
3
1 32

1
2

2

, 

( )
f

f

R
RCC

Bq

v

−

+−
+=

1

ˆˆ1
3
1 32

1
2

2

, 

( )
f

f

R
RCC

Bq

w

−

−−
+=

1

ˆ2ˆ1
3
1 32

1
2

2

, 

( ) ( )[ ]
z
U

z
lRKRKAu fuf ∂

∂
∂
∂ρ

ρ
⋅+= ρ

13 2
2 , 

( )
2

2 ⎟
⎠

⎞
⎜
⎝

⎛
∂
∂ρ

ρ
⋅= ρ z

lRKBb f , 

 
where 
 

( )f

i

s

b
f R

R

z
Uwu

wg
P
PR

Pr
=

∂
∂

=−=  – flux Richardson number, 

2

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂ρ

ρ−=

z
U

z
g

Ri     – gradient Richardson number, 

 

( ) ( )
( )f

fu
f RK

RK
R

ρ

=Pr     – Prandtl number. 
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Functions 
( )fRKK ρρ =     and    ( )fuu RKK =  

 
are defined by the following analytical formulas: 
 

( ) ( ) ( )f

c

f

f R
R
R

KRK
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= ρρ 1

1
0 ,     ( ) ( )

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==
ρ

2

1

1

1
0PrPr

R
R
R
R

RK
RK

R
f

f

f

fu
f , 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ρ

1

2
2

ˆ310
B
CAK ,      ( ) ⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

1

1

1

2

1

2
1

ˆ

3

ˆˆ31
2
30

B
C

B
C

B
CBKu , 

 

 ( ) ( )322
1

2 ˆ2ˆ3
0

111 CCB
B
A

KRc
+++=

ρ

, 

( ) ( )2
23232

11

ˆˆˆ2ˆ3
2

3
0

111 CCCCA
BKR u

+++= , 

( ) 3
1

2

2

ˆ
2
9

0
111 C

B
A

KRR c ρ

−= . 

 
 
 
 
 
If we put the turbulent length scale l  to be proportional to the mixing layer 
width L  
 

l a L= ⋅     ( 1.0≈a ), 
 
the solution can be completed analytically for limit cases when  
 

Rf → −∞  – buoyancy driven mixing layer (“pure” Rayleigh-Tailor 
turbulence) and 

 
Rf = 0  – shear driven (neutral) mixing layer (“pure” Kelvin-

Helmgoltz turbulence). 
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BUOYANT (RAYLEIGH-TAILOR) MIXING LAYER ( ) Rf → −∞

Equations set on pages 11-12 reduces to: 
∂ρ
∂

∂ρ
∂t

w
z

= ,   
( ) 2/3

2
2/3

2/1
1

10
⎟
⎠

⎞
⎜
⎝

⎛
∂
∂ρ

ρ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ρ

z
lg

R
K

Bw
c

,   
( )

z
g

R
K

Blq
c ∂

∂ρ
ρ

= ρ 02/1
1 , 

u

q

v

q
C
B

2

2

2

2
3

1

1
3

= = −
$

,   
w

q
C
B

2

2
3

1

1
3

2= +
$

,   
( ) 2

2
0

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂ρ

ρ
= ρ

z
l

R
K

Bb
c

. 

 

Mean density shape equation: 
( ) 2/322/3

2/1
1

0
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ρ

ρ∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂ρ ρ

z
l

z
g

R
K

B
t c

. 

Self-similar solution: 

( )( )ρ ρ ρ δ ζ= + +1 2
2

1 A ,      ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ
ζ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ
ζ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ
ζ

=ζδ
∗∗∗

42
2

5
12

3
212

8
15 , 

where 

( ) ( )tL
z

K
R

Ba
c

5/35/1

1
5/4 0ˆ

21
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
=ζ

ρ

  – non-dimensional coordinate, 

 
( )L t Agt= 2 2α  – mixing layer width, 

 
5/1

8
1352 ⎟

⎠
⎞

⎜
⎝
⎛=ζ∗  – non-dimensional mixing layer width, 

A = −
+

ρ ρ
ρ ρ

2 1

2 1
  – Atwood number. 

 
 

1
2

±=⎟
⎠
⎞

⎜
⎝
⎛ ζ
±δ ∗  consequently 

 ( )

5/35/1

1
5/4

5/1

0
21

8
1352 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ α
=⎟

⎠
⎞

⎜
⎝
⎛=ζ

ρ
∗ K

R
Ba

c . (1) 

Turbulent energy anisotropy is 

 η=
−

+
=

1

3

1

3

2

2

ˆ

3
1

ˆ2
3
1

B
C
B
C

u

w
. (2) 

 14

Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

Cambridge, UK Edited by S.B. Dalziel



SHEAR (KELVIN-HELMGOLTZ) MIXING LAYER ( ) Rf = 0

Equations set on pages 11-12 reduces to: 
 

∂
∂

∂
∂

U
t z

wu= − ,   ( )wu lqK U
zu= − ⋅$ 0 ∂
∂

,   ( )q B K l U
zu= 1 0$ ∂
∂

, 

u

q
C
B

2

2
2

1

1
3

2= +
$

,   
v

q

w

q
C
B

2

2

2

2
2

1

1
3

= = −
$

. 

 

Mean velocity shape equation:  ( ) 2
2

2/3

1

2
1

0
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂

z
Ul

zB
KB

t
U u . 

 

Self-similar solution:  ( )ζδ⋅−= 1122
1 UUU ,     ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ
ζ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζ
ζ

=ζδ
∗∗∗∗

2

1
232

2
1

, 

where 

( ) ( ) ( )tL
z

K
B

Ba u 0
1

3/2
1

3/1
1α=ζ  – non-dimensional coordinate, 

( ) tUUtL ⋅−α= 121 2
1

 – mixing layer width, 
3/162 ⋅=ζ ∗∗    – non-dimensional mixing layer width. 

 
 

1
21 ±=⎟
⎠
⎞

⎜
⎝
⎛ ζ
±δ ∗∗  consequently 

 
( ) ( )0

62 1
3/2

1

3/1
13/1

uK
B

Ba
α

=⋅=ζ ∗∗ . (3) 

 
Turbulent energy anisotropy and non-dimensional shear stress are 
 

 1

1

2

1

2

2

2

ˆ

3
1

ˆ2
3
1

η=
−

+
=

B
C
B
C

w

u
,     

( )
2

1
2

0ˆ
η==−

B
K

q
wu u . (4) 
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THE FOLLOWING DATA DEFINE EMPIRIC CONSTANTS LISTED IN 

THE FOURTH COLUMN OF TABLE 2 ON PAGE 21 

 
 
Experimental and DNS data 

on Rayleigh-Tailor turbulence: 
06.0≈α  – mixing rate [5], 
8.2≈η  – turbulence energy anisotropy [5], 

 
on Kelvin-Helmgoltz turbulence: 

4.0≈α  – mixing rate [6], 
3.21 ≈η  – turbulence energy anisotropy [7], 
14.02 ≈η  – non-dimensional shear stress [7]. 

 
1.0≈a  – eddy’s length scale ( l a L= ⋅ , usual assumption is Ll << ). 

 
Rc ≈ 0 21.  – critical value of Richardson number [8]. 
 
Formulas (1)-(4) received from analytic solutions. 
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ATMOSPHERIC SURFACE STRATIFIED LAYER 

Algebraic model (pages 11-13) is also valid for stratified boundary layer 
near rough surface [3,9] (see figure below). 
 

 

g 

U(z), 
z 

ρ(z) 

rough surface 

x 
 

 
In the limit 0→z  as the surface is approached and buoyancy effect vanish 
( ) the following asymptotic formulas are valid: 0→fR

wu u= − ∗
2 ,   w u= − ∗ ∗ρ

ρ
,   ∂

∂ κ
U
z

u
z

= ∗ ,  
z

u
κ

=ε ∗
3

,   ∂ρ
∂ α

ρ
κρz z

= − ∗1 ,   l z= κ , 

R g
u

zf =
∗

∗
2
ρ
ρ
κ , 

where  is von Karman constant. 4.0≈κ
Near surface turbulent variables are constant: 
 

( ) ( )222222222 ˆ,ˆ,ˆ,ˆ,,, qwvuuqwvu ∗= ,     η=
2

2

w

u
. 

 
Observed data [3,9] 
 

( ) ( )21.0,1,8.2,55.2,2.1,2.1,9.1,,,ˆ,ˆ,ˆ,ˆ =αη ρ cRqwvu  
 
and algebraic model formulas on pages 12, 13 yield the values of empiric 
constants listed in the third column of the table 2 on page 21. 
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There were also fulfilled numerical simulations by 1D code MUZA of 
Rayleigh-Tailor turbulent mixing development for varies (not small) values of 
density drop on the interface of two incompressible fluids. 

 18

08.02 =A
au

NUMERICAL OPTIMIZATION OF EMPIRIC CONSTANTS BY CODE 
MUZA TO DESCRIBE RAYLEIGH-TAILOR MIXING FOR ARBITRARY 

DESITY DROP 

The results of the empiric constants numerical fitting see in the fifth 
column of table 2 on page 21. 

 
The constant  governing the process of turbulent mass flux 

dissipation provides the identity −≡ , which is valid for incompressible 
fluids. (u  – Favre-mean velocity, ( )a−  – mass flux associated velocity, see 
page 6). 

The additional constant of turbulent kinetic energy redistribution C  
provides the observed value of turbulent energy anisotropy (  [5]) when 

. 

3

8.2≈η
63.03 =C

1.0=εThe diffusion constants were put equal to the constant C , which 
governs the diffusion of energy dissipation ε . This provides smooth enough 
shapes of mean flow and turbulence variables. 

At last it turned out, that turbulent layer growth rate α  is very sensitive to 
buoyant production of ε , C  gives 835.03 =ε 06.0=α . 

 
The figures 1 and 2 demonstrate the results of Rayleigh-Tailor mixing 

simulation for density drop 3/ 21 =ρρ . Dashed lines are predictions of k -ε  
model (see page 7, ). 1.0=ρC
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Fig. 1 Full mixing zone width L and heavy fluid penetration width Lb versus covered path S= gt2/2. Self-similar vertical 

shapes of mean flow variables (density ρ, mass fraction c2, pressure P, ξ=z/gt2 – non-dimensional vertical 
coordinate). 
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Fig. 2 Self-similar vertical shapes of non-dimensional turbulence variables: Favre-mean velocity gtu /  and turbulent flux 

velocity gta / , density self-correlation b, kinetic energy 2  and it’s components , dissipation rate 

.    ( )
)/(gtk 2

2,1 )/(gtk

tg2/ε ( )1//1 21 −ρρρρ−=ab  – density self-correlation exact analytic formula for immiscible fluids. 
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TABLE 2.  EMPIRIC CONSTANTS ESTIMATES 

 

 Physical process Atmospheric surface 
layer (algebraic model) 

Shear and buoyant free 
mixing layer (algebraic 
model for small density 

drop) 

Rayleigh-Tailor 
turbulent mixing 

(numeric optimization 
by code MUZA) 

1A  Turbulence anisotropy relaxation, 
energy redistribution 1.03   1.09 1.09

2A  Turbulent mass flux dissipation 0.59 0.151 0.08 
1B  Turbulent kinetic energy dissipation 16.5 17.5 - 
2B  Density self-correlation dissipation    7.82 9.15 9.15
1C  0.0712   0.083 0.083
2C  0.108   0.194 0.194
3C  

Reynolds stress components 
exchange, energy redistribution 

0  0 0.63 

C  
Diffusion of all variables 
( ecbuk CCCCCC ===== ρ ) -  - 0.1 

εC  ε  diffusion 0.1 [2] - 0.1 
ε1C  ε  shear production 1.45 - 1.45 
ε2C  ε  dissipation 2 [2] - 2 
ε3C  ε  buoyant production - - 0.835 
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CONCLUSIONS 

 The values of empiric constants estimated analytically using algebraic 
model for surface and free mixing layers with small density change and the ones 
received by numerical optimization for Rayleigh-Tailor turbulent mixing with 
arbitrary density drop do not differ dramatically. This fact allows to hope that 
the second order closure model we use captures the main physical aspects of 
turbulent mixing. 
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