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A second order closure engineering model for multimaterial variable-density
turbulent flows is proposed. Closure hypothesis are based on the analogy to that
for incompressible shear flows and stratified boundary layers with small density
change.

A short-cut variant of the model with algebraic equations for turbulent variables
is formulated in local equilibrium approximation. In the frame of algebraic
model the problem of turbulent mixing layer development on the interface
between two fluids is considered for small density drop. Estimations of empiric
constants values are fulfilled using analytical solutions received and
experimental data on shear and buoyant mixing on the interface and atmospheric
surface layer observed data also.

The model is implemented in 1D hydrodynamic code MUZA. Raleigh-Tailor
turbulence test simulations approved the model adequacy. Numerical
optimization of empiric constants for arbitrary density drops gives the values
close to the estimated ones.
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SECOND ORDER CLOSURE TURBULENCE MODEL FORMULATION

The initial set of Navier-Stokes equations for compressible, variable-
density, multimaterial flow is:

Op Opu .
—+—==0, densit
ot 0Ox, ( y)
pCy + PUC _ O pD o , (mass fractions)
ot OX,, OX,, OX,,
opu; Opu,u; 0G; :
+—2L=—9%4pq;, velocit
& Tk ok PY; ( y)
Ope + OpuU, =GCgp g + 0 e or : (internal energy)
ot OX,, OXg 0%y U OXy
ojj = —Pd;; + Ty,
. OU;
T = U Ny +—L —38"— Ny : (molecular viscous stress tensor)
OXj OX; 3 70X,

Ensemble averaging using combination of
Reynolds decomposition u=U+u’, u'=0

and Favre (mass-weighted)

decomposition u=u+u"”, pu”"=0
(u=u"-u" T=u+u" E:p_u 7:_p'u')
p p

produce mean flow equations [1]:
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One can derive full set of unclosed equations for second-order correlations [1]:

pu'cy — turbulent mass fraction flux,
puju’ — Reynolds stress tensor (turbulent momentum flux),
pu/e” — turbulent internal energy flux (heat flux),
— u : : : : :
u'= —% — velocity-density correlation (mass flux associated velocity),
p
(1 : :
b=—-p'| = | —density self-correlation,
p
— 'C, : : :
Cy =— p_" — mass fraction - density correlation,
p
—~  pe . : .
e” =—>— —internal energy - density correlation.
p

Closure assumptions we used are based on the analogy to that usually
applied to model incompressible shear flows [2], shear and stratified
(convective) boundary layers [3]. That guarantees the model validity in the limit
case of constant density or small density change (when Boussinesq convective
approximation is good).

We were also motivated to minimize complexity and the number of
empirical constants.

The governing dimensional variables are

k = u; — turbulent kinetic energy and
2

1 (ou; o o
e=—U p & — rate of dissipation of turbulent kinetic energy

p Xg
or
q=~2k — turbulent velocity scale and

3
q

— turbulent length scale.
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TURBULENCE MODEL EQUATIONS

Equation for Reynolds stress pu;u; :

opuu’ 853(1?11’]’ o 13 oulul ou’u’ oujul
+ - —-pC,d- +—14 =
ot OX OX, | 5 OX,, OX ; OX;

o J

_ﬁaﬁj ﬁ@ﬁi T~ e\ 2. —

ox; o 3 "o,

Equation for turbulent mass flux —§u=i”:

opu’ Opusu’ _ o |_ ou’ ou”\| _—au”
Ly L C . d| Ty Do || _gurPe -
& ax, ok {p & (ax ox, ﬂ Po

(03

Equation for density self-correlation b = —p'(ij :
p

85b+85uab_ 0 5C,d- ob —ﬁbau“ +5Ea_b:

ot oX,  OX, OX,, OX,, OX

Where

q :\/u(';z =/2k - turbulent velocity scale, | :S— — turbulent length scale,
18
k? B, .
d =—:Iql — turbulent transport coefficient,
€
&P
OX;

~ 1 i .
g, =— — pressure acceleration, ¢, — sound velocity.
p
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For mass fraction turbulent flux and internal energy turbulent flux we use
simple gradient type approximation:

u'c; =-C.d (2% u'’e"=-C.d [@_i(’i]

To complete the model it is necessary to add pair equations (or formulas) for
governing dimensional variables:

q,l or k.

We use traditional k and ¢ equations [4]:

opk opusk 8 [_ ok ) _
T - Cod- X |=5(P, +P, —¢),
o ox axa[p ‘ axJ PR+, —c)

o o

6p8 + apuoc8 _ 0 (Csﬁd ﬁj = EE(C]-SPS +C38Pb _C288)’

ot oX,  OX OX,,
where
P, = _ugug i P is shear production of turbulent energy and
XOL
P =-u"g, — buoyant production.

We shall also use below simple formulas for | instead of & equation defining

q3 (2k)3/2
dissipation rate according to Kolmogorov relation: €= sl Bl
1 1
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1D CODE MUZA

The model described above was implemented in 1D code MUZA, solving
the following equations in Lagrange coordinates for plane, cylindrical and
spherical geometry (we miss overbars below).

Mean flow equations:

o, 230
ot om

Y ERPEA

ot odm om

au o(p+2pk,) s,

HM gz AP () k)220,

P g om (2 1)r

@:—péz(u+a)+ 0 Zszﬂ+e+i >%p 2Cd e__P 5 P :
ot om om om om om  (pc, ) om

Mass flux associated velocity a =—u":

a_2o ( > 2C ,a- gaj C,d-a —+paaz—a—paZa—u+
m

ot om r? om om
yoks| P LR R B e,
om cg om om  6A, k

Density self-correlation:

b_20 ( 522C,d abj b2 _par P L aipyg( P LR Biey
ot om om om om

Turbulent kinetic energy:

ok 0 ok ok S
— = 13pCd-| pZ—+20T 2L +(k;—k,)L2° ||+ P. + P, —¢,
ot am{ Pl (P om p om (1 2)r ﬂ s b —¢€

where P, = —2pk, %Z—mqu(k —k,) U Srl 2°, P, =-ax—.
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Turbulent kinetic energy components:

F_ 0 (52520, 9% g [ pr X2 4 (k, —k,)2 |2 20— 2pkz M
ot om om 8m r)r om

Pb—E— B, (k 1) +4C, k(za_u_EGZ_uj CZ(ZpklZé—u+1PS)—EC3Pb-
3 6A 3 om 30 om 3 3

For plane and spherical case: k, =k, = %(k —k,).

Turbulent kinetic energy dissipation rate:

88 8 52,2 o€ 8
p’Cd-— |+—-(C.P,+C;.R, -C

dm=ZXpdr - Lagrange mass element.

> =1, s;,=0,s,=0 for plane geometry,
Y=2nr, s =1,5,=0 for cylindrical geometry,
Y =4nr?, s, =1,s,=1 for spherical geometry.

G=5+5,.

It is possible transition to the first order closure k-e model applying

gradient approximation for mass flux

a=Cyd- 2[89 i@j

om ¢Zom

and assumption of turbulent kinetic energy isotropy
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TABLE 1. THE LIST OF EMPIRICAL CONSTANTS USED IN THE TURBULENCE MODEL EQUATIONS AND

PHYSICAL PROCESSES THEY GOVERN

Interaction Shear Buovant
Turbulence variable Diffusion Dissipation | with pressure : yar

fluctuations production production
Reynolds stress Cy B, A,C,,C,,C, - -
Turbulent mass flux Cou «—— A - ]
Density self-correlation C, B, - - -
Mass fraction flux C. - - - ]
Internal energy flux C. - - - -
Turbulent energy dissipation C. C,. - C. Cs.

The problem is to estimate these empirical constants.
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ALGEBRAIC MODEL FOR TURBULENCE VARIABLES

By neglecting convective and diffusion terms (local equilibrium
approximation) the turbulence equations on page 4 reduce to the following
algebraic set:

2 = =
= _ | [[==0Uj  ——=0Ui | (5~ . 5~ 2
=| = S = = =| =
_Cl 2 5L %_Jau_a _C2 ui”u(';a_J_}_u}'u&aL 28” gc gaua _
oX;  OX; 30X, “ oX, 3 OXq

ql “ox, “'|pox,
oo ()12 8
q pOX, Cq
sz
uc’ =—C d-=£
i~k c 6xi
aXI ECS

Note that the classical first order k-& model [4] based on Boussinesq
gradient hypothesis is a particular case of algebraic model:

Ui”U?:qzi_Cud'Sij: Sij:%'i_%_gsij%
3 OXj OX; 3 7 OXy
u_.":_p'ui':(; d- 10p Go ,
" p P pax, ¢
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FREE TURBULENT MIXING LAYER ON THE INTERFACE OF TWO
FLUIDS

Our goal is to estimate empiric constants of the model describing
turbulent mixing induced by Rayleigh-Taylor and Kelvin-Helmgoltz
instabilities.

Consider the plane horizontally uniform turbulent mixing layer on the
interface between two fluids of different density and different horizontal
velocity in vertical gravitational field g (see figure below).

P2

U2_>

We apply algebraic model to describe evolution of mixing layer in the
case of incompressible fluids and small density drop at the interface.

We shall use more convenient notations (accepted in geophysics [3]):
{Ei }z u,v,w) — Favre-mean velocity components,

{_,"}: (u,v,w) — turbulent flux velocity components,

{u{’u{’}: (<u2>,<v2>,<w2>) — velocity fluctuations components (turbulent energy
components),

{u{'u i }: ((uv), (uw), (vw)) — shear stress components.

10
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ALGEBRAIC MODEL FOR INCOMPRESSIBLE FLUIDS AND SMALL
DENSITY DROP AT THE INTERFACE

For horizontally uniform flow V =W =0, v=0, (uv)=(vw)=0 and all
variables are the functions of vertical coordinate z only.

Mean flow equations and algebraic turbulent equations may now be
written as:

: densit
i (density)
oU 0 : :
—=——(WU), horizontal velocit
ot 82< > ( )
: ouU o

—— = —(wu)—+wg, (turbulent kinetic energy)
B,l 0z

) _

2\ q I 6U 2
<u >—?+a_— 2C2<WU>E—C3WQ:|,
<v2> =%+I—_éz<wu>a—u—é3wg}, (turbulent Kinetic energy
ql 0z components)
2
AL L ou _a
<W > =3 +E[C2<WU>E+ 2C3wg} ,
3 e w1 eqr)Y L e

(wu) = T {( C2<w >+ Cq ) o Cyu g] (shear stress)

I oU 10p : :
u=3A —| -W—+(wu)—— |, horizontal mass flux velocit

A q[ 0z < > p azJ ( )

w=3A, — <w >——+ bg |, (vertical mass flux velocity)

q p oz

| 10 . .
b=B,—w——, (density self-correlation)
q poz

where

61:2A1C1' cA:2:2A_L(1_Cz)’ CA::>,:2A1(1_C3)-
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Making a formal substitution

w = IgK 100 and <wu>:—Iun%
p 0z 0z

after considerable algebra all turbulent variables can be defined as a functions of

. : : 1
density and velocity gradients ——, —:

2 R, -1
qZ:BlKu(Rf)-(l—Rf)lz(%j zBle(Rf)-( ;{f )'2%%5’

<u2>_1+i(262+63Rf)

> 3 B 1-R, '

<V_2>:l+i(—éz+é3Rf)’
3 B, 1-R,

1 0p oU
u=3A|K (R )+ K, (R, )| 17 ==E=—,
2
| op
b=B,K (R, )| ——1,
where
R = —i Wgau = R, — flux Richardson number,
I:)s <WU>7 Pr(Rf)
0z
9p
p 0z : .
R =- 5 —gradient Richardson number,
%)
0z

Pr(R, )= R — Prandtl number.
p
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Functions
K,=K,(Ry) and K,=K,(Ry)

p

are defined by the following analytical formulas:

K (R,)=K , |
P( f) P 1_Rf Kp Rf [1_Rfj
RZ
3C 3 3C,\C, C
K (0)=A|1-=2|, K,(0)==B,||1-—2|=2_-"1]
0= A1) 03 K 81]381 Bj
1 1 3A, A A
— =1 2 (B, +C, +2C.),
R, K, (0) 5, B:+C.r2C)
1 1 3 A oaa A,
— =1 —° (3A,C,+2C,C., +C2),
R, +Ku(0)281( Lo+ 26,6, +C)
1 1 1 9A 4
_:__——CS
R, R, K,(0)2B,

If we put the turbulent length scale | to be proportional to the mixing layer
width L

I=a-L (a=0.1),
the solution can be completed analytically for limit cases when

R > —o0 - buoyancy driven mixing layer (“pure” Rayleigh-Tailor
turbulence) and

R =0 —shear driven (neutral) mixing layer (“pure” Kelvin-
Helmgoltz turbulence).

13
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BUOYANT (RAYLEIGH-TAILOR) MIXING LAYER (R — —x)

Equations set on pages 11-12 reduces to:

3/2 3/2
p_opw g KOV (10017 guz [KoO) [ dp
ot oz’ R, p 0z ’ . R. \poz'
2 A N
W) )16 () 12 b:BKp_GJ)(La_pT
¢ o 3B ¢ 3 B R \paz
3/2 3/2
. P op 1/2 Kp(o) o I apj
Mean density shape equation: — =B — = .
Y Snapeea ot ( R. \/682 p \ 0z

Self-similar solution:
2 4
_Pitpy 15728y, 2(28) | 1(28
p=— 2 (1 AS(C)), 5(@)—8&*}{1 3[@} +5(C*”’
where

3/5
L= % 2_a ARC Z — non-dimensional coordinate,
a B, K,(0) L(t)

L(t)=20Agt> - mixing layer width,

C. = 2(125j — non-dimensional mixing layer width,
A=P2"P1 — Atwood number.

P2 +P1

S(J_r %) = 1 consequently

1/5 3/5
135 1 (20 R,
{1 —(?J (Kp@] ' @

Turbulent energy anisotropy is

<2> 1. 2C,

W B
<u2> ) 1_61 o @

1

14

Cambridge, UK Edited by S.B. Dalziel



Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004

SHEAR (KELVIN-HELMGOLTZ) MIXING LAYER (R; =0)

Equations set on pages 11-12 reduces to:

ouU 0 ouU > ouU
— = =-1gK,(0)-—, q=+/BK,(0) —,
ot oz <WU>, <WU> q U( ) oz q B]- U( ) oz
<u_2>:1+262 <V2>:<W2>:1_§
* 3 B ¢ ¢ 3 B
3/2 2
Mean velocity shape equation: ou _ Blz( Ky (O)J ﬁp(@j
ot B, 0z 0z

2
Self-similar solution: U =%\U2—Ul\-61((;), 61(§):%£§Cj[3—(zcj }

where

¢ =

ol B, z
(aB,)*"* VK, (0) L(t)

L(t) = o, %\UZ —Uy|-t  -mixing layer width,

— non-dimensional coordinate,

.. =262 — non-dimensional mixing layer width.

81(i Q**j = 41 consequently

2
1/3
o B
C** — 2 ’61/3 — 1 1 . (3)
(aBl)Z/3 K,(0)
Turbulent energy anisotropy and non-dimensional shear stress are
L, 2C,
2 - =
<W2> 1 G, q° B,
3 B
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THE FOLLOWING DATA DEFINE EMPIRIC CONSTANTS LISTED IN
THE FOURTH COLUMN OF TABLE 2 ON PAGE 21

Experimental and DNS data
on Rayleigh-Tailor turbulence:
a =~ 0.06 — mixing rate [5],
n = 2.8 — turbulence energy anisotropy [5],

on Kelvin-Helmgoltz turbulence:
o ~ 0.4 — mixing rate [6],
n, = 2.3 —turbulence energy anisotropy [7],
N, = 0.14 — non-dimensional shear stress [7].

a~ 0.1 —eddy’s length scale (I =a- L, usual assumptionis | << L).

R. = 0.21 — critical value of Richardson number [8].

Formulas (1)-(4) received from analytic solutions.

16
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ATMOSPHERIC SURFACE STRATIFIED LAYER

Algebraic model (pages 11-13) is also valid for stratified boundary layer
near rough surface [3,9] (see figure below).

7 A

> U(2),0(2)

rough surface

v

In the limit z— 0 as the surface is approached and buoyancy effect vanish
(R; — 0) the following asymptotic formulas are valid:
3

(wu) = —uy, w=— P a—U=&, £=, @=—i&, | =xz,
p 07 «z KZ 0z o, KZ
Rf:%&KZ,
u. p

where k ~ 0.4 is von Karman constant.
Near surface turbulent variables are constant:

Observed data [3,9]

(3,9, W, d,n o, R )=(191212 2551281, 0.21)

and algebraic model formulas on pages 12, 13 yield the values of empiric
constants listed in the third column of the table 2 on page 21.

17
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NUMERICAL OPTIMIZATION OF EMPIRIC CONSTANTS BY CODE
MUZA TO DESCRIBE RAYLEIGH-TAILOR MIXING FOR ARBITRARY
DESITY DROP

There were also fulfilled numerical simulations by 1D code MUZA of
Rayleigh-Tailor turbulent mixing development for varies (not small) values of
density drop on the interface of two incompressible fluids.

The results of the empiric constants numerical fitting see in the fifth
column of table 2 on page 21.

The constant A, =0.08 governing the process of turbulent mass flux
dissipation provides the identity u=—a, which is valid for incompressible
fluids. (u — Favre-mean velocity, (— a) — mass flux associated velocity, see
page 6).

The additional constant of turbulent kinetic energy redistribution C,
provides the observed value of turbulent energy anisotropy (n =~ 2.8 [5]) when
C; =0.63.

The diffusion constants were put equal to the constant C, =0.1, which

governs the diffusion of energy dissipation €. This provides smooth enough
shapes of mean flow and turbulence variables.

At last it turned out, that turbulent layer growth rate o is very sensitive to
buoyant production of ¢, C,, =0.835 gives a=0.06.

The figures 1 and 2 demonstrate the results of Rayleigh-Tailor mixing

simulation for density drop p,/p, =3. Dashed lines are predictions of k-¢
model (see page 7, C, =0.1).

18
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Fig. 1  Full mixing zone width L and heavy fluid penetration width L, versus covered path S= gt*/2. Self-similar vertical
shapes of mean flow variables (density p, mass fraction c,, pressure P, £=z/gt* — non-dimensional vertical
coordinate).
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Fig. 2  Self-similar vertical shapes of non-dimensional turbulence variables: Favre-mean velocity u/gt and turbulent flux
velocity a/gt, density self-correlation b, kinetic energy k /(gt)? and it’s components Ky, /(gt)?, dissipation rate

elg’t. b,=@1-p/p,Np/p,—1) —density self-correlation exact analytic formula for immiscible fluids.
20
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TABLE 2. EMPIRIC CONSTANTS ESTIMATES

Shear and buoyant free Rayleigh-Tailor
Physical process Atmospheric_surface mixing layer (algebra_lic turbL_JIent r_ni>_<ing_
layer (algebraic model) | model for small density | (numeric optimization
drop) by code MUZA)
A Turbulencg anisotropy relaxation, 103 1.09 1.09
energy redistribution
A, | Turbulent mass flux dissipation 0.59 0.151 0.08
B, | Turbulent kinetic energy dissipation 16.5 17.5 -
B, | Density self-correlation dissipation 7.82 9.15 9.15
C, 0.0712 0.083 0.083
c, Reynolds stress comp_ongnts_ 0.108 0.194 0.194
exchange, energy redistribution
C, 0 0 0.63
Diffusion of all variables
¢ (C:Ck:Cpu:Cb:Cc:Ce) ) ) 01
C. | ¢ diffusion 0.1[2] - 0.1
C,. | £ shear production 1.45 - 1.45
C,. | € dissipation 2 [2] - 2
Cs. | € buoyant production - - 0.835
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CONCLUSIONS

The values of empiric constants estimated analytically using algebraic
model for surface and free mixing layers with small density change and the ones
received by numerical optimization for Rayleigh-Tailor turbulent mixing with
arbitrary density drop do not differ dramatically. This fact allows to hope that
the second order closure model we use captures the main physical aspects of
turbulent mixing.
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