Abstract for the 9th International Workshop on the Physics of Compressible Turbulent Mixing July 2004 Realistic simulation LMJ : FCI1 code (CEA/DAM)

Method of successive shocks : piecewise linearly increasing flux at the origin

optimal compression

And ... profiles close to self-similar solutions

Broadening of the quantities, conservation of the density level, ...

Mean flow result

profiles are modified in physical variables(x, t)

Edited by S.B. Dalziel

July 2004

Mean flow results

Supersonic region near the origin : low Mach Number hypothesis ? Compressed region : convection dominate diffusion

Presence of a thicker instability region with downstream a region of high stabilization

We expect stabilization of perturbations

Cambridge, UK

Edited by S.B. Dalziel

stability analysis of insteady flows

Search for the analogie of one growth rate

Overall mesure of perturbations : extremum of a physical variable in space of ξ for a given vwave number and time. Obtaining of a « dispersion sheet ».

Particularities of self-similar solutions

- not defined in t = 0
- expansion of lengths during time

Ratio of characteristic lengths of self-similar flow on the transverse wave-length of perturbations decreases during time as $t^{-\alpha}$.

k_{\perp} 10^{-3} 1 5 10 25 50100 $\frac{5,7}{5,7}, \quad t_{croiss} = \frac{1}{\sqrt{k \bar{A}_a}} t^{1-\frac{\alpha}{2}}$ 0.300.18 $t_{ecoul} = rac{L_{ABLA}}{ar{U}_a} t$ 0.310.18 $\mathbf{5}$ 449 $\frac{1}{t} \quad \frac{t_{ecoul}}{t_{ecoul}} = \frac{L_{ABLA}}{\bar{U}} \sqrt{\bar{A}_a} \sqrt{k t^{\alpha}} = 6,71.10^{-3} \sqrt{k t^{\alpha}}$ 10^{2} $4.08.10^{2}$

Characteristic time of the flow and growth of perturbations

Space-time structures of perturbations 1.

k_= 0,001

k_= 7

Localisation of perturbations in the thin ablation layer,

Just downstream the unsteady layer

Oscillations in the ablation layer

Are these oscillations confined ?

Idea : Application of a contrast function

As k_{\perp} structures appear in the compressed-shock region couplage between the shock and the ablation front

Cambridge, UK

Edited by S.B. Dalziel

Space-time structures of perturbations 3.

perturbations at the origin $k_{\perp} = 25$ At the origin:

Temporal modulation of the frequence of oscillations

Related to the expansion of the mean flow

At the shock wave:

After a transient time, regular oscillations in phase of perturbation

Cambridge, UK

July 2004