Spherical Combustion Layer in a TNT Explosion

A. L. Kuhl[†] & R. E. Ferguson^{*}

†Lawrence Livermore National Laboratory, Livermore, CA *Krispin Technologies, Inc, Rockville, MD

8th Int. Workshop on the Physics of Compressible Turbulent Mixing

California Institue of Technology Pasadena, California December 9-14, 2001

UCRL-JC-14658

Background: mixing at HE-air interface

- 1977: S. I. Anisimov & Ya. B. Zel'dovich, "Rayleigh-Taylor instability of the boundary between deotnation products and gas in a spherical explosion", *Pis 'ma Zh. Eksp. Teor. Fiz*, **3**, pp. 1081-1084.
- 1983: S. I. Anisimov, Ya. B. Zel'dovich, M. A. Inogamov & M. F. Ivanov, " "Taylor instability of contact boundary between expanding detonation products and a surrounding gas", Shock Waves, Explosions & Detonations" *Prog. Astronautics & Astronautics Series*, **87**, AIAA, Wash., DC, pp 218-227.
- 1996: A. L. Kuhl, "Spherical Mixing Layers in Explosions", *Dynamics of Exothermicity*, Ed. J. R. Bowen, Gordon & Breach, Amsterdam, pp. 291-320.

LLNL Bomb Calorimeter (V=5.28 l)

Composition: *TNT products in O*₂ & *vacuum*

		Atmosphere		
Experimental conditions		Vacuum, detonation	Carbon dioxide, detonation	Oxygen, detonation
Balance level attempted		-	CO and H ₂ O	CO ₂ and H ₂ O
Pressure, atm (absolute)		-	1.66	2.46
-AH detonation ^C				
Experimental		1093 + 11	1116 + 11	3575 + 35
Calculated from products		1133 ± 15	1105 + 15	3594 + 60
Products, mol/mol TNT	N ₂	1.32	1.22	1.54
	н ₂ 0	1.60	1.55	2.65
	cō2	1.25	1.19 ^c	6.82
	C0_	1.98	2.05	0.38
	C(s)	3.65	3.65	Not detected
	н ₂	0.46	0.45	0.050
	NH3	0.16	0.19	0.0050
	CH4	0.099	0.099	0.0011
	HCN	0.020	0.009	0.0005
	NO	Not detected	Not detected	0.0011
	^с 2 ^н 6	0.004	0.003	Not detected
Material recovery, mol%	С	47.9	48.2	103
	H	100	99.9	109
	N	94.1	88.1	103
	0	101	99.7	101

-

Multi-Fluid Model

FORMULATION: turbulent combustion in un-mixed gases

- Three Fluids: Fuel-*F*, Air-*A* & Products-*P* defined by: $\{\rho_K, u_K\}$ where K = F, A, P
- Asymptotic Limit: $Re = Pe = Da \rightarrow \infty$
- **Compressible Flow:** M > 0

CONSERVATION EQUATIONS: *mixture*

- **Mass:** $\partial_t \rho_m + \nabla \cdot \rho_m \mathbf{u} = 0$
- **Momentum:** $\partial_t \rho_m \mathbf{u} + \nabla \cdot \rho_m \mathbf{u} \mathbf{u} = -\nabla p_m$
- Energy: $\partial_t \rho_m U_T + \nabla \cdot \rho_m U_T \mathbf{u} = -\nabla \cdot (p_m \mathbf{u})$ where $U_T = u_m + \mathbf{u} \cdot \mathbf{u}/2$

THERMODYANMIC FIELDS: *fluids*

- **Fuel:** $\partial_t \rho_F + \nabla \cdot \rho_F \mathbf{u} = -\rho_s$ & $\partial_t \rho_F u_F + \nabla \cdot \rho_F u_F \mathbf{u} = -p_F \nabla \cdot \mathbf{u} \rho_s u_F$
- Air: $\partial_t \rho_A + \nabla \cdot \rho_A \mathbf{u} = -\sigma \rho_s$ & $\partial_t \rho_A u_A + \nabla \cdot \rho_A u_A \mathbf{u} = -p_A \nabla \cdot \mathbf{u} \sigma \rho_s u_A$
- **Products:** $\partial_t \rho_P + \nabla \cdot \rho_P \mathbf{u} = (1+\sigma) \beta_s \quad \& \quad \partial_t \rho_P u_P + \nabla \cdot \rho_P u_P \mathbf{u} = -p_P \nabla \cdot \mathbf{u} + (1+\sigma) \beta_s u_P$
- Stoichiometric Source: $\dot{\beta}_{s} = \begin{cases} \rho_{F}(\mathbf{x}_{s}, t_{s}) \delta(t t_{s}) & \text{for } \lambda_{e} \ge 1 \\ \rho_{A}(\mathbf{x}_{s}, t_{s}) \delta(t t_{s}) / \sigma & \text{for } \lambda_{e} < 1 \end{cases}$

• Adiabatic Constraint:
$$\sum_{K} \dot{P}_{K} u_{K} = 0$$

SOLUTION: high-order Godunov scheme & AMR to follow turbulent mixing

Thermodynamic Model

Equations of State: *fluid* K (=F, A & P)

- Perfect Gas Equation: $p_K v_K \equiv w_K \equiv R_K T_K$
- Caloric Equation: $u_K = F_K(w_K) \cong -|q_K| + C_K w_K \iff w_K = F_K^{-1}(u_K) \cong [u_K + |q_K|]/C_K$

Pressures & Temperatures

- *fluid K*: $p_K \equiv \rho_K w_K = \rho_K [u_K + |q_K|] / C_K$ & $T_K = w_K / R_K$
- mixture m: $p_m \equiv \rho_m w_m = \rho_m [u_m + |\mathbf{q}_m|] / C_m$ & $T_m = w_m / R_m$

where

$$\rho_m \equiv \sum_K \rho_K \; ; \; Y_K \equiv \rho_K \; / \; \rho_m \; ; \; u_m \equiv \sum_K Y_K u_K \; ; \; w_m \equiv \sum_K Y_K w_K \; ; \; \mathsf{q}_m \equiv \sum_K Y_K \mathsf{q}_K \; ; \; \mathsf{C}_m = \sum_K Y_K \mathsf{C}_K \; w_K \; / \; w_m$$

Le Chatelier Diagram: combustion of TNT in air

w (kJ/g)

Combustion Model

1. Reactants Formation: *stoichiometric sub-grid mass mixing*:

$$u_R = (u_F + \sigma u_A)/(1 + \sigma)$$
 & $w_R = (w_F + \sigma w_A)/(1 + \sigma)$

2. Combustion = material transformations in the Le Chatelier plane

• at uv = constant (closed systems): $u_P = u_R$

• at
$$hp = constant$$
 (deflagrations): $u_P = u_R - \frac{\Delta Q - (C_P - C_R)w_R}{C_P + 1}$

3. Thermal Equilibration \Leftrightarrow *sub-grid energy mixing*: $T_K^e = T_m$

$$w_K^e = R_K T_m$$
$$u_K^e = -|\mathbf{q}_K| + C_K w_K^e$$

Initial Conditions: Self-Similar CJ Detonation

Evolution: Material & Vorticity Fields

QuickTimeTM and a QuickTimeStand a are needed to see this picture. are needed to see this picture.

QuickTime **PICT**

QuickTime PICT

QuickTime **FICT**

Visualization of Exothermic Fields

Post-Explosion Combustion of HE in Chamber

t (ms)

Fuel Consumption

Résumé

Multi-fluid Model

- Gas-dynamic Conservation Equations for the mixture
- Mass & Energy Conservation Equations for each fluid, with source/sink terms

Thermodynamic Model

- Equations of State: for each fluid
- Thermodynamic-Equilibrium Relations: for mixed cells

Combustion Model

- combustion occurs at thin exothermic sheets: $\mathbf{x}_{s}(t_{s})$ (stoichiometric surface)
- sink for *Fuel & Air* mass and energy
- **source** for *Products* mass and energy
- Combustion \equiv material transformations in the Le Chatelier plane:

$$u_R(w_R) \Rightarrow u_P(w_P)$$

Conclusions

- This **Model** elucidates the link between **turbulence** (**≡ vorticity**) and **exothermicity** (**≡ dilatation**) in the limit of fast chemistry.
- It thus illustrates the dynamics of turbulent combustion where **exothermic effects** are controlled by mixing rather than by the reaction-diffusion mechanism of Zel'dovich & Frank-Kamenetzkii (1938)