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LLNL Bomb Calorimeter (V=5.28 l)
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Composition: TNT products in O2 & vacuum
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Multi-Fluid Model

FORMULATION: turbulent combustion in un-mixed gases
• Three Fluids: Fuel-F, Air-A & Products-P defined by:

• Asymptotic Limit: Re = Pe = Da → ∞
• Compressible Flow:M > 0

CONSERVATION EQUATIONS: mixture
• Mass:

• Momentum:

• Energy:

THERMODYANMIC FIELDS: fluids
• Fuel:

• Air:

• Products:

• Stoichiometric Source:

• Adiabatic Constraint:

SOLUTION: high-order Godunov scheme & AMR to follow turbulent mixing

∂ tρm + ∇ ⋅ ρmu = 0

∂ tρmu + ∇ ⋅ ρmuu = −∇ pm
∂ tρmUT + ∇ ⋅ ρmUT u = −∇ ⋅ (pmu) where UT = um + u ⋅ u / 2

∂ tρF + ∇ ⋅ ρFu = −ρ s & ∂ tρFuF + ∇ ⋅ ρFuFu = −pF∇ ⋅ u − ρ suF
∂ tρA + ∇ ⋅ ρAu = −σρ s & ∂ tρAuA + ∇ ⋅ ρAuAu = −pA∇ ⋅ u −σρ suA
∂ tρP + ∇ ⋅ ρPu = (1+σ) Ýρ s & ∂ tρPuP + ∇ ⋅ ρPuPu = −pP ∇ ⋅ u + (1+σ ) Ýρ suP

Ýρ s =
ρF (xs , ts )δ(t − t s ) for λe ≥ 1

ρA (xs ,t s )δ(t − t s) /σ for λ e <1

� 
� 
� 

� � 

{ρK ,uK} where K = F, A, P

Ýρ KuK
K
� = 0
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Thermodynamic Model

Equations of State: fluid K ( =F, A & P)

• Perfect Gas Equation:

• Caloric Equation:

Pressures & Temperatures

• fluid K:

• mixture m:

where

pKvK ≡ wK ≡ RKTK

pK ≡ ρKwK = ρK[uK + qK ]/ CK & TK = wK / RK

ρm ≡ ρKK� ; YK ≡ ρK /ρm ; um ≡ YKuKK� ; wm ≡ YKwKK� ; qm ≡ YK q K ; Cm = YK CK wK /wmK�K�

uK = FK (wK ) ≅ − qK + CK wK ⇔ wK = FK
−1(uK ) ≅ [uK + q K ] /CK

pm ≡ ρmwm = ρm[um + qm ]/ Cm & Tm = wm / Rm
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Le Chatelier Diagram: combustion of TNT in air
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Combustion Model

1. Reactants Formation: stoichiometric sub-grid mass mixing:

2. Combustion ≡≡≡≡ material transformations in the Le Chatelier plane

• at uv = constant (closed systems):

• at hp = constant (deflagrations):

3. Thermal Equilibration ⇔⇔⇔⇔ sub-grid energy mixing:

uR = (uF + σ uA ) /(1+σ ) & wR = (wF + σ wA ) /(1+σ )

uP = uR

uP = uR − ∆Q− (CP −CR )wR
CP+1

wK
e = RKTm
uK
e = −qK +CK wK

e

TK
e = Tm
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Initial Conditions: Self-Similar CJ Detonation
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QuickTime™ and a
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QuickTime™ and a
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are needed to see this picture.

Evolution: Material & Vorticity Fields
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Visualization of Exothermic Fields
material fields vorticity field

pressure field dilatation field
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Post-Explosion Combustion of HE in Chamber
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Fuel Consumption
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Résumé

Multi-fluid Model
• Gas-dynamic Conservation Equations for the mixture

• Mass & Energy Conservation Equations for each fluid, with source/sink terms

Thermodynamic Model
• Equations of State: for each fluid

• Thermodynamic-Equilibrium Relations: for mixed cells

Combustion Model
• combustion occurs at thin exothermic sheets: (stoichiometric surface)

• sink for Fuel & Air mass and energy

• source for Products mass and energy

• Combustion ≡≡≡≡ material transformations in the Le Chatelier plane:

x s(ts )

uR (wR )� uP(wP )
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Conclusions

• This Model elucidates the link between turbulence (≡≡≡≡ vorticity)

and exothermicity (≡≡≡≡ dilatation) in the limit of fast chemistry.

• It thus illustrates the dynamics of turbulent combustion where
exothermic effects are controlled by mixing — rather than by the

reaction-diffusion mechanism of Zel’dovich & Frank-Kamenetzkii (1938)


