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We have developed a procedure to determine

when the interfaces become turbulent

We address two fundamental questions:

(1) When do the interfaces in a instability-driven flow
become turbulent ?

(2) Have existing experiments achieved turbulent state ?

Rocket-Rig (AWE), Linear Electric Motor (LLNL), Laser-Driven (Omega),
shock tube (Univ. of Arizona), Gas Curtain (LANL), classical RT experiments
(Cambridge Univ. and All Union Sci. Res. Inst. Exp. Phys.)

This procedure provides much needed guidance for
future designs of both classical fluid dynamics and
laser-driven turbulent mixing experiments
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Both spatial and temporal scales must be reached

for achieving mixing transition

Physics

*The greatest differences in flow behavior occur before and after
this critical mixing transition time

e If turbulent mixing of materials is important, then future
experiments must reach the relevant Reynolds number

* Both relevant spatial and temporal scales must be achieved

Design of future experiments

- Provide the necessary condition for experimental facilities and
target design
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Important length scales of turbulent flow are

defined by the classical Kolmogorov theory

* The outer scale of the flow o is determined by external forcing

* The Kolmogorov length scale n is the smallest length scale

Inertial subrange

* The existence of turbulent flow is indicated by the inertial
subrange

Nn<<A<<d

The dynamics at an inertial subrange A is not affected by o
and n.

 This condition is usually too broad to be of practical use.
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Cascade picture illustrates many aspects of the lk_\i

Kolmogorov phenomenology L
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Notice that at each step the addiea are space filling.

Review: Zhou and Speziale,
Appl. Mech. Rev., 1998
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Measured energy spectrum of fluid turbulence

follows the Kolmogorov -5/3 scaling
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FIGURE 11. Normalized longitudinal spectrum compared with data from other APS 2001-5

experiments. This compilation is from Chapman (1979) with later additions.
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Mixing transition of Dimotakis refines the criterion

for transition to fully developed turbulence

The mixing transition

*Reflects the inability of the flow to remain stable as the damping

effects of viscosity are reduced with increasing Reynolds number

VL
Re = —
v

*Visualization illustrates that the transition is rather abrupt and

results in an increasingly disorganized three-dimensionality.

* To fix a tighter bound, Dimotakis proposed that the extent of the
inertial range can be narrowed to

n<< A,<< A << A, <9

v is the inner viscous scale, A, i ¢ha iepmann-Taylor scale

P.E. Dimotakis, JFM 409, 69 (2000) YZ_IWPCTM_113001-7



This transition is co-incident with the appearance of a

range of scales decoupled from both large-scale and

viscous effects

Upper bound of the inertial

range: Liepmann-Taylor

scale

- Large-scale effects

L -"‘-.‘-,_.\\\__- i _‘"

Lower bound of the
inertial range: Inner
viscous scale

a3 |
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The smallest
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Kolmogorov scale,

Figure 19. Reynolds number dependence of spatial scales for a turbulent jet

P.E. Dimotakis, JFM 409, 69 (2000)
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A universal transition to fully developed turbulent
mixing was postulated for an outer Reynolds number

Liquid-jet concentration in a Couette-Taylor flow (Lathrop 1992)
round turbulent jet (Dimotakis 1983)

Outer-scale Reynolds number = 1-- 2 «104 is required
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A critical Reynolds number can be found at which a

rather abrupt transition to a well mixed state occurs
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Re = 1.75%103 Re = 2.3x10*

The mixing transition at Re =2 x 104 is

observed to occur in a wide range of flows
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We have extended the mixing transition concept

from the stationary to transitional flows

The outer scale is a function of time

* The outer scale Reynolds number is time dependent

The Liepmann-Taylor scale
-1/2
A, =50Re
is the asymptotic temporal limit of a diffusion layer

A(t) =4 (Vf)l/z

*The inner viscous length is a function of time -- A (f) = 50« ARe "

Criteria for mixing transition in time-dependent flows:
A (2) << A << Min [A[(8),A,(1)]
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RT and RM instability induced turbulent flow can be

determined by the outer-scale length scale and Re

*The mixing zone width (h) is the only relevant length scale for
Rayleigh-Taylor and Richtmyer-Meshkov instability driven flows

* The outer-scale length scale 6 is identified as h.

The mixing zone widths of both RT and RM driven flows are
functions of time:

RT: h=aAgt witha= g+a ,A= (g-9)/(a+Q)

RM: h ~ t@ with06=0.2 --'0.6
: e
Reynolds number: Re= - - — = 2 y L
—1/2 Coefficients
- Liepmann-Taylor scale: A, =5heRe from Dimotakis,

_ ~3/4 JFM 409, 69
- Inner viscous scale: A,=50hRe (2000)
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The evolution of a 2D single-mode perturbation
(A=50pm, a,=2.5um) is observed with x-ray radiography

t=8ns t=12ns t=14 ns

ap.y = 83 ym ap.y =121 ym ap.y = 157 ym

Radiographic images obtained with 4.7keV Ti He-a x-rays imaged onto
a gated x-ray framing camera
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Parameters characterize the high temperature,

elevated Reynolds number flow
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Mixing transition predicted using the mixing zone

width and outer-scale Reynolds number (Dimotakis)
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The experiment was terminated before reaching the

time required for achieving the mixing transition &i

Scale comparison
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Guided by this type of analysis, new laser-driven experiments are
being designed for accelerating the mixing transition process:

* Longer duration of experiment
* Multi-mode initial conditions

* 3D initial conditions




AWE Rocket-Rig Rayleigh-Taylor experiments by
Read and Youngs can achieve the mixing transition
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Linear Electric Motor Rayleigh-Taylor experiment can

achieve the mixing transition after 1/3 of the duration
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The turbulent transition time in the LANL gas curtain =|

experiment can be determined by this new procedure
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Rayleigh-Taylor experiments at Cambridge University E

can achieve Reynolds number ~ 1.75x10° in theory
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RT induced flow field is contaminated around 10

seconds by the wake resulted from the barrier withdraw Ei'

(a)

203 5 T.5 10 13,5 15 time (second)

A challenge is to
remove the wake so a
RT induced mixing
transition can be
observed

Increasing the size of the tank will help, but cannot

remove the contamination completely
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The time required for achieving mixing transition
depends on the Mach number of the flow

PLIF images assembled from
incident shock waves with three
different Mach numbers (~ 6 ms)

(J. Jacob, Univ. of Arizona)
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Jacob’s experiment with Mach 1.2 incident shock

wave does not achieve mixing transition
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Mixing transition may occur when the Mach

number of the incident shock is increased to 1.3

o Mix amplitude

Ll ] [E1] = o [=1]
T T T T T T
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The prediction of mixing transition at 1.6 ms is

consistent with the experiment

- Mix amplitude Experiment measurement
17.5 indicates that transition
o occurs between 1.32 -- 2.15 ms
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The prediction of mixing transition at 0.28 ms is

consistent with the experimental measurement
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A procedure to estimate the time required for mixing E

transition in time-dependent flows has been developed

Conclusions

* The flows induced by the RT and RM instabilities are time-
dependent and have important applications in astrophysics
and Inertial Confinement Fusion

*Both relevant spatial and temporal scales must be achieved

e Existing major experiments have been investigated regarding
whether they have achieved turbulent state

*This procedure provides guidance for future designs of both

classical fluid dynamics and laser-driven turbulent mixing
experiments
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