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RM instability: perturbation growth due to the vorticity generation at 
both sides of a contact surface by means of corrugated shock fronts. 
 
 
 
We distinguish two situations: 
 
1) A shock is reflected back or, 

 
2) a rarefaction is reflected instead 

 
 
 



Two possible approaches to get the growth rate are: 
 
1-heuristic models based on an impulsive formulation (RM, VMG, MB), 
 
2-rigorous linear theory:  
 
-numerical solution as in Richtmyer, CPaAM 13, 297 (1960) or in Yang, 
Zhang and Sharp (PoF 6, 1856 (1994)),  
- series expansions as in Velikovich, PoF 8, 1666 (1996), Wouchuk and 
Nishihara, PoP 3, 3761 (1996). 
-closed analytical formulas deduced from linear theory [Fraley, PoF 29, 
376 (1986) Wouchuk and Nishihara, PoP 3,3761 (1996);4, 1028 (1997)]  
 
 
 



It is clear that an estimate by means of a closed formula would be useful 
be it for numerical or experimental studies. 
 
It is always possible to get asymptotic expressions of the rate of growth 
truncating the temporal expansions. However, the validity of such 
expressions is limited to very weak incident shocks. 
 
The same restriction applies to any heuristic approach like the ones 
based on an impulsive formulation of the instability. 
 
 
Before discussing an exact formulation that leads to a very accurate 
determination of the growth rate, we discuss some of the hypothesis 
underlying the heuristic models. 
 



The impulsive formulations make the assumptions: 
 
 
 
a) Incompressible fluid flow after shock transit, and 
 
 
b) Irrotational perturbations left by the shocks. 
 
 
 
 
 
 
 



The general form of the vorticity profile left by a rippled shock is: 
 
 
 

 

 

 
 
 

δω (x,y) = Ω δps (kx / sinh(θs ))sin(ky)

δω (x,y) = Ω δp(x, t =
x

Us
)sin(ky)

δω (x,y) = A2n+1 J2n+1 kx / sinh(θs )( )
n≥0
∑ sin(ky)



We see that vorticity production could be substantial, and this fact 
depends on fluids properties as well as on the incident shock intensity. 
 
The vorticity left by the shock fronts is the memory of the effect of the 
“rippled compression” of the fluid elements. 
 
For a strictly planar shock the flow behind it will be trivially 
irrotational. 
 
For a corrugated front, the flow behind it will be rotational. 
 
The vorticity deposited in the interior of the fluids will have a definite 
effect on the interface growth as we are going to see. It can not be 
neglected for strong shocks or highly compressible fluids. 
 



Tangential velocity: 
 

 
 
 
 
Normal velocity: 
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∂t

= −
1

ρmf
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∞
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are not equal in the general case. 

 
 
In fact, the parameters: 
 

 
 
 
are different from zero and become important for very strong shocks 
and highly compressible fluids. 

Fa = δvya
∞ + δvi

∞,
Fb = δvyb

∞ − δvi
∞

δvi
∞ , δvya

∞ , and δvyb
∞



How do we relate the parameters Fa and Fb with the shock 
compression history? 

 
Asymptotic velocity fields: 
 
-Incompressibility: 
 

 
-Vorticity: 
 
 

dδvx
dx + δvy = 0,

dδvy
dx + δvx = Ωδp(x /sinhθs)



 
We get, for example: 
 
 

 
 
 
The right hand side can not be made zero for moderate to strong shocks. 
 
 
 
 

d2δvx
dx2 − δvx = − Ωδp(x / sinhθs )



 
 
In fact, not only the qualitative form of the velocity profile is modified 
because of the bulk vorticity: the asymptotic value of the interface 
velocity could be seriously inferior to any value deduced from an 
irrotational assumption. 
 
 
 
 
 
 
 
 
 



 
 
An exact expression of the linear asymptotic growth rate is obtained: 
 

 
 
 
Fa and Fb must be related with the compressible evolution of the 
instability. 
 
 
 

δvi
∞ =

ρbf δvyb
0 − ρaf δvya

0

ρbf + ρaf
+

−ρbf Fb + ρaf Fa
ρbf + ρaf



For very weak shocks we have the scaling laws: 
 

 
 
 
 
And then, an irrotational estimation for the asymptotic velocity is 
justified: 
 

δvirrot
∞ =

ρbf δvyb
0 − ρaf δvya

0

ρbf + ρaf

Fa ∝ (Mt
2 −1)7 / 2

Fb ∝ (Mr
2 −1)7 / 2

 

 
 

  

δvya
0 ∝ (Mt

2 −1)

δvya
0 ∝ Mr

2 −1

 

 
 

  



 
We make a Laplace transform of the equation for δvx and get: 
 
 

 
 
A similar equation holds in fluid “a”. 
 
The function δP is the time Laplace transform of the shock front 
pressure perturbations. 
 
To get bounded perturbations, we see that it must be: 

δVxb(σ ) =
σ δvi

∞ − δvyb
∞ − Ωb sinhθrδPr (σ sinhθr )

σ 2 −1



 
 

 
 
And an analogous relationship holds in fluid “a”. 
 
 
If a rarefaction were reflected, then: Fb = 0.  
 
 
Thus, to get the values of Fa and Fb, we need temporal averages of 
 the shock pressure functions. 
 

How do we calculate the parameters Fa and Fb? 

Fb = −δvi
∞ +δvyb

∞ = ΩbsinhθrδPr(sinhθr)



 
We change to the coordinate system: 
 

 
The shock-fronts coordinates are defined by: 
 

 

kx =r sinhθ
kc f t = r coshθ

 
 
 

  

tanhθr =
Ur
cbf

tanhθt = −
Ut
caf



It can also be seen that the Laplace transform of the shock pressure in 
each fluid can be written as: 
 

 
 
 
Where “q” is related to the Laplace variable “s” through: 
 
 

 
s= sinh q

δPm (θ,q)=
Fm1(q −θ ) + Fm2(q +θ )

coshq



 
In principle we have four unknown functions: 
 

 
 
After some algebra, at the shock fronts and at the interface, we can 
relate Fa1 and Fb2 in the following way: 
 
 

Fa1(qa ), Fa2 (qa )
Fb1(qb ), Fb2(qb )

 
 
 

Fa1(qa )+ φb3 Fb2 (qb ) = φb1 + φb2 Fb2 (qb + 2θr )
Fb2(qb ) +φa3 Fa1(qa ) = φa1 + φa2 Fa1(qa − 2θt )

 
 
 



 
Besides, it can be seen that the desired parameters Fa and Fb are easily 
related to specific values of Fa1 and Fb2: 
 

 
 
 
 
A very fast and accurate algorithm can be implemented to get Fa and Fb. 
 
 
 

Fa = εa1 Fa1(−2θt )+ εa0

Fb = εb1 Fb2 (2θr ) + εb0

 
 
 



 
 
We define an iteration sequence: 
 

 
 
with which we get the parameters Fa and Fb. 
 
With just the starting values (n = 0) we can get up to 3 digits in the 
asymptotic velocities even for very strong shocks and highly 
compressible fluids. 
For details see Phys. Plasmas8, 2890 (2001), Phys. Rev. E 63, 056303 
(2001). 

Fa
[n] and Fb

[n]
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