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Outline of presentationOutline of presentation

• Motivation
– The need for turbulent transport and mixing models
– Single- vs. multiple-velocity, multi-component fluid formulations

• Derivation of the Favre-Reynolds averaged single-velocity equations
• Two-equation turbulence models

– The general K-Z model
– The K-ε model
– Derivation of consistent K-l, K-ω, and K-τ models

• Work in progress: a priori model tests
– Determination of model coefficients from experimental data
– Determination of model coefficients from simulation data

• Conclusions
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An averaged description of turbulent transport and
mixing is needed due to the very wide range of
spatio-temporal scales in turbulent mixing layers

An averaged description of turbulent transport and
mixing is needed due to the very wide range of
spatio-temporal scales in turbulent mixing layers
• Direct numerical simulation (DNS) cannot attain parameter regimes
of interest for astrophysical and inertial confinement fusion (ICF)
applications

• Large-eddy simulation (LES) is not yet sufficiently developed
• Interim solution: turbulent transport and mixing models, which have
similarities with LES

ICF supernova

• Transport models are based
on closing terms in the
density-weighted averaged
equations
– Reynolds stress tensor
– Density and energy flux

• These quantities are modeled
using an eddy viscosity
approximation
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Single-velocity formulations of multi-
component flow are significantly less complex
than multiple-velocity formulations

Single-velocity formulations of multi-
component flow are significantly less complex
than multiple-velocity formulations

• Single-velocity, multi-component fluid formulations:
– Equations systematically derived from reacting flow theory
– Equations have nearly the same form as the single-fluid,
compressible fluid dynamics equations

– Additional fluxes involving a diffusion velocity are present
– The diffusion velocity is obtained, and these fluxes are expressed
in terms of a mass diffusion flux

• Multiple-velocity, multi-component fluid formulations:
– Require multiple advection terms equal to number of fluids
– Require fluid dynamic fields for every fluid, so the number of
equations to model and solve is large

– Require phenomenological modeling of interfacial source terms
arising from interfacial averaging: drag, added mass terms, etc.
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The derivation of the single-velocity equations
begins with the full, N-fluid equations expressing
mass, momentum, and energy conservation

The derivation of the single-velocity equations
begins with the full, N-fluid equations expressing
mass, momentum, and energy conservation
• In compact form, these equations are (r labels each fluid):

– where the fields, fluxes, forces, and sources are
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These fields are defined so that summing
appropriate expressions over each fluids
recovers the non-reacting, single-fluid equations

These fields are defined so that summing
appropriate expressions over each fluids
recovers the non-reacting, single-fluid equations

• The quantities ρr, vα
r, Ur, ϕr, Φα

rad,r, Φr, gα, Rr, and Hr are the density,
velocity, internal energy, scalar, radiative flux, scalar flux,
acceleration, reaction rate, and heat of formation

• The pressure, viscous stress tensor, and total energy are

• Consistency with the single-fluid equations is obtained with the
constraints
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The single-velocity equations are obtained by
decomposing the velocity into a mean velocity
plus a diffusion velocity

The single-velocity equations are obtained by
decomposing the velocity into a mean velocity
plus a diffusion velocity

• Introduce the local mass fraction of fluid r

• Write the velocity of fluid r as

where Vr is the diffusion velocity, which expresses the molecular
transport caused by the concentration gradient in fluid r

• The identity

is central to the derivation of the single-velocity equations
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The single-velocity equations are a
consequence of the previous identities
The single-velocity equations are a
consequence of the previous identities

• Substituting the velocity decomposition into the multi-component
equations, summing, and using the previous identities gives the
single-velocity equations

• The fields and fluxes are

where the last term in Jαβ depends on the diffusion velocity and must
be modeled
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The forces, sources, and other quantities are
defined as follows
The forces, sources, and other quantities are
defined as follows

• The forces and sources are

• The total density, pressure, radiative flux, viscous stress tensor,
dynamic viscosity, and bulk viscosity are
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The diffusive fluxes are defined as followsThe diffusive fluxes are defined as follows

• The multi-component viscous diffusion stress tensor is

• The diffusive energy flux is

• The diffusive scalar flux is
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The averaged equations are obtained by
introducing the Favre-Reynolds
decompositions and averaging

The averaged equations are obtained by
introducing the Favre-Reynolds
decompositions and averaging

• The Favre-Reynolds decompositions are

• The Favre average is

• The Favre-averaged multi-component fluid dynamics equations are
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The Favre-averaged fields and fluxes are
defined as follows
The Favre-averaged fields and fluxes are
defined as follows

• The fields and fluxes are
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The Favre-averaged forces and sources are
defined as follows
The Favre-averaged forces and sources are
defined as follows

• The forces and sources are

• At large Reynolds numbers, the viscous stress terms and diffusive
fluxes are assumed to be negligible compared to the Reynolds stress
tensor and turbulent fluxes
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A gradient diffusion approximation is usually used
to model the turbulent stresses and fluxes
A gradient diffusion approximation is usually used
to model the turbulent stresses and fluxes

• The gradient diffusion approximation is

• The eddy viscosity

is determined by the solution of transport equations for two
turbulence variables K (= E’’) and
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The turbulent kinetic energy equation is closed
as follows
The turbulent kinetic energy equation is closed
as follows

• The unclosed turbulent kinetic energy equation is

• Use the gradient diffusion approximation to close the diffusion term
and density flux, and (Mat is the turbulent Mach number)
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The modeled turbulent kinetic energy
dissipation rate transport equation is obtained
as follows

The modeled turbulent kinetic energy
dissipation rate transport equation is obtained
as follows
• The turbulent kinetic energy dissipation rate equation is obtained by
multiplying the turbulent kinetic energy equation by ε/K and a
dimensionless constant for each term:

�

�t
� � �� �

�

�x j
� ���

�v j

�

force production

C�0
�
��

E ��

� vi
��
� �

� v i
�� gi �

mean velocity production

C�1
�
��

E ��

�v i
�

�x j
�vi

�� v j
��

�

kinetic energy dissipation rate

C�2 �
���

2

E ��

�

turbulent diffusion

�

�x j

�t
��

��
��

�x j

�

pressure work

C�3
�
��

E ��

vi
�� �p

�x i
�

pressure-dilatation

C�4
�
��

E ��

p�
�v i

��

�x i



Oleg Schilling
IWPCTM-12/01 17

The modeled Z transport equation is obtained
from the K and εεεε equations as follows
The modeled Z transport equation is obtained
from the K and εεεε equations as follows

• Using the K and ε equations,
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The turbulent diffusion term is transformed as
follows
The turbulent diffusion term is transformed as
follows

• Substituting

it follows that
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Finally, the modeled form of the Z transport
equation is as follows
Finally, the modeled form of the Z transport
equation is as follows
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The coefficients in the modeled Z transport
equation are obtained from those in the εεεε
equation

The coefficients in the modeled Z transport
equation are obtained from those in the εεεε
equation
• The coefficients in the standard K-ε model are

• The coefficients in the Z equation are

• Different choices of m and n yield different 2-equation models:
– with m = 0 and n = 1 (turbulent energy dissipation)
– with m = 3/2 and n = -1 (turbulent lengthscale)
– with m = -1 and n = 1 (turbulent frequency)
– with m = 1 and n = -1 (turbulent timescale)
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The K-Z model simplifies for several special
types of turbulent flows, which can be used
to tune the model coefficients

The K-Z model simplifies for several special
types of turbulent flows, which can be used
to tune the model coefficients

• Isotropic turbulence: power-law decaying solutions
– Production terms proportional to τ ij, the turbulent diffusion
terms, and the mean velocity vanish

• Free shear flows (plane wake; mixing layer; plane, round, and
radial jet): far-field, self-similar, statistically-stationary solutions
– Solutions depend on the similarity variable η = y/x

– Turbulent boundary layers: power-law solutions in the
logarithmic layer
– Sufficiently far from the boundary, the eddy viscosity
dominates the molecular viscosity and the advection terms
are negligible
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The K-Z model equations have power-law
solutions for isotropic turbulence
The K-Z model equations have power-law
solutions for isotropic turbulence

• The model equations reduce to coupled ordinary differential
equations

• The initial conditions are and

• The corresponding solutions are

• Experimentally, K(t) ∝ t-1.34, which determines Cε2 (or CZ2)
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The K-Z model equations have similarity
solutions for free shear flows
The K-Z model equations have similarity
solutions for free shear flows

• The model equations reduce to (and are solved by transforming to
the similarity variable)

where r = 1 corresponds to a round jet and r = 0 otherwise, and
the shear stress is
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The K-Z model equations have similarity
solutions for the mixing layer
The K-Z model equations have similarity
solutions for the mixing layer

• The solutions have the form

where v = v1 – v2 is the velocity difference between the two
streams
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The K-Z model equations have solutions
consistent with the law-of-the-wall in
bounded flows

The K-Z model equations have solutions
consistent with the law-of-the-wall in
bounded flows
• The Reynolds-averaged and K-Z equations reduce to

• The solutions have the form (where vτ is the friction velocity, κ is
the von Kármán constant, and C, D, CZ are constants)
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Application to asymptotically self-similar
Rayleigh-Taylor mixing
Application to asymptotically self-similar
Rayleigh-Taylor mixing

• The turbulence production term is of the form

• Assume that at sufficiently late times, the scaling of the mixing
layer width is

and that turbulence variables are proportional to this lengthscale
and the corresponding velocity scale

• Then, K, ε, and Z are
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In Rayleigh-Taylor mixing the eddy viscosity
and Reynolds stress tensor scale as follows
In Rayleigh-Taylor mixing the eddy viscosity
and Reynolds stress tensor scale as follows

• The eddy viscosity scales as

• The Reynolds stress scales as

• Therefore, if the Favre-averaged strain-rate tensor dimensionally
scales as (qij is dimensionless)

then and
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ConclusionsConclusions

• The methodology presented here provides a systematic and self-
consistent approach to the derivation of 2-equation turbulent
transport models
– This provides an improved l transport equation
– Also provides a consistent expression for the diffusion and cross
diffusion terms, which are important in many flow (e.g., near a
boundary)

• Several canonical turbulent flows can be used to reduce the model
equations and specify model parameters before application to
interfacial-instability induced turbulence

• The general Z equation is consistent with the t2 scaling of the mixing
layer width

• Both an ω and a τ equation were derived as alternatives to the ε and
l equation
– τ may be a better physical variable than ε and l
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Work in progressWork in progress

• Completion of solutions for canonical turbulent flows
• Completion of solutions for Rayleigh-Taylor instability-induced
turbulence

• Commencement of examination of model parameters and forms of
modeled terms using high-resolution DNS data

• Eventually, application to Richtmyer-Meshkov instability-induced
turbulence


