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An averaged description of turbulent transport and

mixing is needed due to the very wide range of
spatio-temporal scales in turbulent mixing layers
 Direct numerical simulation (DNS) cannot attain parameter regimes

of interest for astrophysical and inertial confinement fusion (ICF)
applications

 Large-eddy simulation (LES) is not yet sufficiently developed

* Interim solution: turbulent transport and mixing models, which have
similarities with LES

* Transport models are based
on closing terms in the
density-weighted averaged
equations

— Reynolds stress tensor
— Density and energy flux
» These quantities are modeled T oamemmeen
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Single-velocity formulations of multi-

component flow are significantly less complex
than multiple-velocity formulations

 Single-velocity, multi-component fluid formulations:
— Equations systematically derived from reacting flow theory
— Equations have nearly the same form as the single-fluid,
compressible fluid dynamics equations
— Additional fluxes involving a diffusion velocity are present
— The diffusion velocity is obtained, and these fluxes are expressed
in terms of a mass diffusion flux
« Multiple-velocity, multi-component fluid formulations:
— Require multiple advection terms equal to number of fluids
— Require fluid dynamic fields for every fluid, so the number of
equations to model and solve is large

— Require phenomenological modeling of interfacial source terms
arising from interfacial averaging: drag, added mass terms, etc.
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The derivation of the single-velocity equations
begins with the full, N-fluid equations expressing

mass, momentum, and energy conservation
* In compact form, these equations are (r labels each fluid):

L(pr i)+ L~ v,

— where the flelds, fluxes, forces, and sources are
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p v P VeV +p Oap — Oyp
pr ¢I(; = > Zzﬁ = rad.r
pre’ (p”e”+pr)v’b —vgagﬁ+®ﬁ ’
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These fields are defined so that summing

appropriate expressions over each fluids
recovers the non-reacting, single-fluid equations

« The quantities o, v,", U', ¢", @, @&, g,, R, and H" are the density,
velocity, internal energy, scalar, radiative flux, scalar flux,
acceleration, reaction rate, and heat of formation

* The pressure, viscous stress tensor, and total energy are
pr=p(p U
r 27 ovy
) T (5 - 7)5“5 oy
v2 _I_Ur_l_pmrHl”_g,X

« Consistency with the single-fluid equations is obtained with the
constraints
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The single-velocity equations are obtained by

decomposing the velocity into a mean velocity
nlus a diffusion velocit

* Introduce the local mass fraction of fluid r

mr(Xat) = PTF ” Z;]»\il mr(x,t) — 1

« Write the velocity of fluid r as

N
V=v+V' | v=> " mV

r=1
where V' is the diffusion velocity, which expresses the molecular
transport caused by the concentration gradient in fluid r
* The identity
ZNI m"V' = (

]/‘=

is central to the derivation of the single-velocity equations
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The single-velocity equations are a

consequence of the previous identities

« Substituting the velocity decomposition into the multi-component
equations, summing, and using the previous identities gives the
single-velocity equations

0Jap

L(pgu)+ 5L = Fy+ S,

 The fields and fluxes are

[ p ) ( Vs ARAR R

pVa PVaVp +PBap — Oup ~Oup
pd)a - -]aﬁ - rad +
pe (pe+p)vp—vaCap+ D %

Ay \ phvs + @ )\

where the last term in J ; depends on the diffusion velocity and must
be modeled
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The forces, sources, and other quantities are

defined as follows

 The forces and sources are

[0 ) (0 ) [0 )

a 0 0
Fa _ PE Sa _ +ZN1
0 PCaVa . H' R"

N N NI
The total density, pressure, radiative flux, viscous stress tensor,
dynamic viscosity, and bulk viscosity are

p = Zfil pr p = Zi\ilpr(pr, UI’) (Drad — an\;l (Daad,r
Oap = “( Z;g aVﬁ ) (‘S_ _) oaf axy

+Zfil Hr( 8x; aVﬁ ) (5” — —)5a/3 8x;

‘U = Zr]\il ‘ur ’ 5 = Zrzl ér Oleg Schilling
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The diffusive fluxes are defined as follows

« The multi-component viscous diffusion stress tensor is
D N
Oap =P, mVyV
* The diffusive energy flux is
N
Jo=p)y,  meV;

* The diffusive scalar flux is

J = piil m" "V,
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The averaged equations are obtained by

introducing the Favre-Reynolds
decompositions and averaqging

« The Favre-Reynolds decompositions are
Pu(x,0) = PL(x,0) + d5(x,0)"

pr(x,t) = pr(x, )+ p'(x,0)" p'(x,t) = P(x,1) +p"(x,1)

 The Favre average is
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The Favre-averaged fields and fluxes are

defined as follows

 The fields and fluxes are

( PV \ ( 0 \

aﬁ = ~ o~ ~  ~ ~ + I o~
(PE+P)Vp—VaBup+ D5+ T PV —va0as+ @R +J5 +pe v
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The Favre-averaged forces and sources are

defined as follows

 The forces and sources are

(o N\ [ 0 A
0 0
DZaVa p' vl ga+2r<ﬁrﬁr +W>
0

NIV J

« At large Reynolds numbers, the viscous stress terms and diffusive
fluxes are assumed to be negligible compared to the Reynolds stress
tensor and turbulent fluxes
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A gradient diffusion approximation is usually used I_

to model the turbulent stresses and fluxes

« The gradient diffusion approximation is

im0 — 0 Vi —
pouv] = Pdavi =5 (5=PP.)

S —

* The eddy viscosity
m+2n

_1
v, = Cu(E”) ” (Z”) ”

is determined by the solution of transport equations for two
turbulence variables K (= E”) and

7 = c(F)" ()
- Z Oleg Schilling
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The turbulent kinetic energy equation is closed |_

as follows

« The unclosed turbulent kinetic energy equation is

1 o (=10~
S(PE )+ £(PE W)

T
T T pY Vi U U DIT
. J ~]

f ducti "
oreeproduetion turbulentdiffusion
Il i /!
v VY — VT op ;o nov; DI 9V,
N v Hr_J \ ) \ v J

meanvelocityproduction ~ pressurework pressure-dilatation  kineticenergydissipatiomrate

« Use the gradient diffusion approximation to close the diffusion term
and density flux, and (Ma; is the turbulent Mach number)
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The modeled turbulent kinetic energy I_

dissipation rate transport equation is obtained

as follows

« The turbulent kinetic energy dissipation rate equation is obtained by
multiplying the turbulent kinetic energy equation by &K and a
dimensionless constant for each term:

(r) £ (r70)

_Ceo~ DV, +,ov>g,+C€1:vla (pv v”)

C @ E
force production mean velocity production
@) 5
_ — 0 Ht  Oe
CaPp £ 0x; (GG ox/ )
. v J . v J
kinetic energy dissipation rate turbulent diffusion
a // op o ov)
— Cg p + Cat = p
Vi 8x,
E E"

. J |\
Y Y
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The modeled Z transport equation is obtained

from the K and € equations as follows

« Using the K and € equations,
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The turbulent diffusion term is transformed as

follows

* Substituting

— — 1/n

it follows that

~ 7
Z// ,T/ 0 élt oF . + ’11 0 élt
Il an k  OxJ f an €

Nno ¢
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oxJ 2;?7// Ox/

:m?a Ht@ﬁ_l_a Hi 8?_m
’iﬁ 8xj Ok ox/ 6xj Oe Ox/

Oleg Schilling
IWPCTM-12/01 18



Finally, the modeled form of the Z transport
equation is as follows

_C C Z ~ 3 1 B Cr D 2’7;’7
ZO~ ,OV +,0V gz+ Zl <= Vi \pV;V 2 P ==
£ OX J £
force production mean velocity production kinetic energy dissipation rate
( 2| wmZ o ( w eE
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turbulent diffusion
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The coefficients in the modeled Z transport

equation are obtained from those in the €
equation
* The coefficients in the standard K- model are

GkZI.O . 6621.3 . C€1=1.44 . C€2=1.92
Caoo=Caq=1.0

* The coefficients in the Z equation are

CZ()Em-I-I’lCE() , CleernCd , szEm-I-nCez
Cz3Em+I’lC€3 . Cz4Em+nC€4

« Different choices of m and n yield different 2-equation models:
— Eﬁ—g with m = 0 and n = 1 (turbulent energy dissipation)
— E'")7 with m=3/2 and n = -1 (turbulent lengthscale)
— ﬁ_gﬁ with m = -1 and n = 1 (turbulent frequency)
— 227-,17 with m =1 and n = -1 (turbulent timescale) e Sehiing
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The K-Z model simplifies for several special I_

types of turbulent flows, which can be used
to tune the model coefficients

* |sotropic turbulence: power-law decaying solutions

— Production terms proportional to Tjp the turbulent diffusion
terms, and the mean velocity vanish

* Free shear flows (plane wake; mixing layer; plane, round, and
radial jet): far-field, self-similar, statistically-stationary solutions

— Solutions depend on the similarity variable n = y/x

— Turbulent boundary layers: power-law solutions in the
logarithmic layer

— Sufficiently far from the boundary, the eddy viscosity
dominates the molecular viscosity and the advection terms
are negligible
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The K-Z model equations have power-law

solutions for isotropic turbulence

« The model equations reduce to coupled ordinary differential
equations d .
aK _ _ az _ _ A
di € di Czn €
» The initial conditions are  K(0) = Kgnd
Z(0) = Zy = C,K'el!
* The corresponding solutions are

K(f) . sz—m—n €0 —n/(sz—m—n)
Ko I:l T ( n Ko t:l

_1/(C =1
=14 (Ca-ng ]

2 I:Ku) ]sz _ I:K(n :Im+"Cez
Zy Ky - Ky

« Experimentally, K(t) O t'-*4, which determines C,, (or C.,)
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The K-Z model equations have similarity

solutions for free shear flows

* The model equations reduce to (and are solved by transforming to
the similarity variable)

— — 0 . vy 1 0 (., VYt OK
("xEJ”’yE)K_TW o €T ay(y o )

— 2
— 0 — 0 _ 7 v ; 7
(VXE—FVJ;E)Z—CZlth(aX ) _szfe

J

1 0 (r Ve 0Z mZ 0O r Ve oK'\ _ m 0 (,r Ve Z 0K
+yr 8y(y Oe 8y)+Ky” 8y(y Ok 8y) v 5y(y GeKay)

Vi (az mZ 0K (l—n o7 m oK

noce

+ oy K oy

Z 0y K oy

where r = 1 corresponds to a round jet and r = 0 otherwise, and
the shear stress is

o
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The K-Z model equations have similarity

solutions for the mixing layer

» The solutions have the form
V(ny) = AVTL()
K(x,) = (Av)* K(n)
Z(x,y) = Cz (Av)™ Ky [ 52 | ey

where v = v, -V, is the velocity difference between the two
streams
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The K-Z model equations have solutions

consistent with the law-of-the-wall in
bounded flows

* The Reynolds-averaged and K-Z equations reduce to

i(lutavx)zo
(5) (2 %) pe

CZIK,Ut(avx) _szp_eJr 0 (5; az)

Oy Oy
mZ 0 Hi oK '\ 0 He Z 0OK
+K 8y(0k 5y) mﬁy(GGKﬁy)

4 (az_mz 8K)(1—n 0Z _ m 8K):O

n0e \ Oy K oy Z o K o

 The solutions have the form (where v_ is the friction velocity, « is
the von Karman constant, and C, D, C, are constants)

—_ n
v, = -Zlogy+C , K=Dv2 , Z=Cszv%m+3n(Kiy>



Application to asymptotically self-similar

Rayleigh-Taylor mixing

» The turbulence production term is of the form

7 o
P;=Cy 41y —

« Assume that at sufficiently late times, the scaling of the mixing
layer width is

h(t) = aAtgt?
and that turbulence variables are proportional to this lengthscale
and the corresponding velocity scale

 Then, K, € and Z are

(o
E" =

I~

»2
2

oo () o 4(adtg)’? € = TE o 8(adig)’t

277 _ Cz(ﬁ)m (g/.//)n oC (aAtg)2m+2n t2m+n
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In Rayleigh-Taylor mixing the eddy viscosity |_

and Reynolds stress tensor scale as follows

 The eddy viscosity scales as

min N L

v, = (E//) n (Zl/) o (aAtg)2t3
* The Reynolds stress scales as

t; =2PpE" — —2pvt(Sl-j— ; 8;: )

_ 2 o[ 4 s 6j oV
o 2p(adrg)’ P 45— (Ty - 2L 24 )]
» Therefore, if the Favre-averaged strain-rate tensor dimensionally

scales as (g; is dimensionless)

T 1 v | 9V 1 dh() 1
Sl] 2 ( 8x] + 8x,- ) q Z h(f) df [

then 7 oc 2 (adig)* (=685 —q; )and

PZ oC (aAtg)z(m+n) t2m+n_1 F( % 51] o ql])ql] Oleg Schilling
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Conclusions

* The methodology presented here provides a systematic and self-
consistent approach to the derivation of 2-equation turbulent
transport models

— This provides an improved / transport equation

— Also provides a consistent expression for the diffusion and cross
diffusion terms, which are important in many flow (e.g., near a
boundary)

« Several canonical turbulent flows can be used to reduce the model
equations and specify model parameters before application to
interfacial-instability induced turbulence

- The general Z equation is consistent with the t? scaling of the mixing
layer width

« Both an wand a requation were derived as alternatives to the £and
| equation

— T may be a better physical variable than £and / Oleg Schiling
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Work in progress

Completion of solutions for canonical turbulent flows

Completion of solutions for Rayleigh-Taylor instability-induced
turbulence

Commencement of examination of model parameters and forms of
modeled terms using high-resolution DNS data

Eventually, application to Richtmyer-Meshkov instability-induced
turbulence
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