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In this paper the technique first used in Ref.1,2 for solving the point blast wave stability 

problem is applied for the one of the self-similar converging shock wave after focusing.  

Equations for the case of converging self-similar shock wave 

The obtained in Ref.1-4 system of equations can be applied for the case under 

consideration. 

Let us consider the uniform equation for perturbations (we use the notification of Ref.4): 
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With boundary conditions: 
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According to the self-similar approach we look for the solution in the self-similar form: 

 (F1,R1,P1) ~ rλ f(r/S), and: s1 ~ rλ        (5) 

After inserting of self-similar variables (functions of z=r/S) we get: 
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(Here D stands for differential operator: Df
d

d z
f≡

ln
) 
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Because of presence of non-zero initial velocity before shock front (we denote this 

velocity u0) the mass conservation equation is changing: 
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So coefficients in (Eqs.27) look like as follows: 

xP

wz
ub

wwDwa

x

Dx
w

γ

α
3

0 )1(

)1
1

)(1(

+=

−+−+=

=

        (8) 

(Here variables ������ �����2 are functions of z), the front value of coefficient w is 
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calculated from spherically symmetric solution. 

Equation system (6) has the fourth order; there are four boundary conditions on the front 

edge (z=1): 
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These conditions construct full set of boundary conditions necessary to determine a 

solution. (To derive the conditions one should take into account the characteristics of gas flow 

before the shock front because values P1 (shock) and s1  in (31) depend on values of gradients of 

pressure and velocity before the shock front). 

In order to construct the eigenvalue problem we add the fifth boundary condition (at the 

center): 

1(0)=0           (10) 

We solve the eigenvalue problem (Eqs.6,9,10) and we calculate the values of power 

exponent λ (see Eq.5) as eigenvalues. 

We used the simultaneous solving of spherically symmetric equations and equations for 

perturbations. The variables P1, F1, x1 are expressed as functions of w and coefficients a, b, in 

Eq.6 are also expressed as functions of w: 
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Using this approach the eigenvalue problem was solved numerically. The values of λ 

were calculated as eigenvalues. The dependence of λ on γ and harmonic number n is shown on 

Fig.1, Fig2. 

The case under consideration differs from other cases with diverging shock waves 

considered earlier. Curves on figures look like irregular ones. The reason of it is that self-similar 

solutions exist only in small region on the plane n-γ. For big harmonic numbers (n≥15 for γ=1.2, 

γ=1.4 and n≥7 for γ=1.667) self-similar solution supposedly does not exist at all.  

Fig.3, Fig.4 present the computer validation of self-similar results shown on Fig.1, Fig.2. 

V.Yu Meltsas performed the computer modeling of the reflected from the center shock wave in 

the way he did it in Ref.5 . The results of computer modeling agree the results of self-similar 

calculations: we see the exponential perturbation grow on Fig. 3 and oscillation regime of 

perturbation evolution for the case n=2, γ=1.667 on Fig.4. 

Acknowledgments 

The author wishes to acknowledge the financial support by ISTC (Project No 874). 

 

References: 

1. V.M.Ktitorov (Russian Atomic Science and Technique Issues, Ser. Theoretical and 

Applied Physics), No2, p.28, (1984); 

2. D.Ryu and E.T.Vishniac, Astrophys.J. 313, 820 (1987); 

3. V.M.Ktitorov, Khimicheskaya Fizika (Chemical Physics Issues) V.14, No 2-3, p.169, 

(1995)  

4. V.M.Ktitorov Stability of Diverging Shock Waves, Report at the 8th IWCTM, 

Pasadena, Dec, 9-14, 200112.  

5. V.M.Ktitorov,V.Yu.Meltsas, “Study of point blast wave instability in numerical 

experiment”, Proceedings of  the 6th IWPCTM, p.251 

 

 



 4 

����������	��
���λ ��
��γ=1.2,γ=1.4

�

�

�

�

�

�

� � � � � � � � 	 
 �� �� �� �� �� ��

����
�����
������

���

���

 

Fig. 1 Real eigenvalues λ(n) for γ=1.2, γ=1.4. Shock wave is unstable with respect to 

perturbations of all harmonic numbers. 
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Fig.2 Complex (for n=1,2,3) and real (for n>3) power exponents (eigenvalues) λ(n) for 

gases with γ=1.667. There appears to be no self-similar perturbations for n>6. 
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Fig.3 Perturbation evolution for shock wave in a gas with γ=1.2 
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Fig.4 Perturbation evolution for shock wave in a gas with γ=1.667 


