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Introduction 
The problem of a search for cases of unstable evolution of expanding shock waves with 

non-radial perturbations growing in amplitude was formulated long ago but  there was no 
essential progress in this field until 1980-ths. The first proof of an existence of the unstable 
regime of perturbation evolution was published in the paper by E.Vishniac (Ref.1) where 
stability of point blast wave in an ideal gas with a specific heat ratio equal to unit (γ=1) was 
considered. In this case the gas behind the shock front is compressed into thin dense layer 
moving under influence of pressure of hot gas in the center region. The calculation of this layer 
movement can be done simply by application of conservation laws. This calculation was made 
in Ref. 1 for small blast wave perturbations those being expanded in spherical harmonics. 
Results of these calculations were as follows: 

- small perturbation evolution had oscillating pattern, 
-perturbations with big enough harmonic numbers were growing in amplitude with power 

dependence of time the power exponent being complex number, 
- the discovered instability was Raleigh-Taylor type. 
Later investigations revealed that all these features are characteristic for the perturbations 

evolution in the general case of an arbitrary value of γ. 
V.Ktitorov2 and E.Vishniac and D.Ryu3 first published the solution of the point blast 

wave stability problem in the general case of an arbitrary γ>1. There was considered the point 
blast wave in a uniform gas with constant density. There were found  values determining the 
perturbation evolution: the increment of perturbation growth, and the period of oscillations. 
These  values were calculated for a large number of sets: harmonic number n and gas specific 
heat ratio γ. 

 The critical value of γ determining the blast wave stability was found too (Ref.2): 
γc=1.20. If γ were greater than this value the blast wave would be stable with respect to 
perturbations of all harmonic numbers; if γ<1.20, on the contrary, there would exist growing in 
amplitude harmonics. 

Later there was found an experimental validation of these calculation results (Ref.4,5)5. 
This solution was obtained owing to using in Refs. 2,3 a self-similar approach for 

calculation of perturbation structure. The physical sense of this approach was in considering an 
asymptotically regime of perturbation evolution. This regime takes place when time of 
perturbation evolution is large enough to make the influence of initial conditions become 
negligibly small. The analogy could be made between the role of this solution in describing the 
perturbation evolution and the role of the well-known Taylor-Sedov solution Ref.6 in 
describing an evolution of spherically symmetric blasts. 

Later on the number of systems with blast waves that were studied using the self-similar 
approach was extended; and the following cases were considered: 

- Cylindrical blast wave (Ref.7), 
- Isothermal blast wave (Ref.8), 
- Blast wave in gas which has initial density depending on radius as power function 

(Ref.9), 
- Blast wave in a non-ideal gas, which specific heat ratio γ is a function of gas density  ρ 

(Ref.10). 
In this paper we use the self-similar approach in order to consider the stability problem of 

these and some other systems in the unified manner. 
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1.STABILITY 0F A POINT BLAST WAVE IN AN IDEAL GAS  
 
1.1 Formulating the stability problem 
 
Let us consider a spherical (s=3) or cylindrical (s=2) blast wave in an ideal gas in the 

case when the initial gas density ρ0 is a power function of radius r: r0~rk. According to2 we shall 
write the hydrodynamic system of equations in the Lagrangian form. 

The following notation is used below: 
R - the Eulerian co-ordinates 
r - the Lagrangian co-ordinates (the initial co-ordinates before shock front are taken as the 

Lagrangian   co-ordinates), 
d R

d r

D R

D r

3

3

3

3

( )

( )

( ,cos , )

( ,cos , )
≡ Θ Φ

θ ϕ
 - the Jacobian of the transformation from the Lagrangian to the 

Eulerian co-ordinates, 
P  - pressure, r - density, r0 - the initial density  (r0~ rk ), 
We start considering the stability problem from writing 3D hydrodynamic equations in 

the Lagrangian form: (here time derivative is to be understood in the Lagrangian sense - it is the 
derivative along the flow line). The first two equations are obvious: 

∂
∂ ργt

P
( ) ,= 0          (1) 

ρ
ρ
0

3

3=
d R

d r

( )

( )
         (2) 

The equation of motion (the third equation) can be deduced from its Eulerian form (for 
the sake of simplicity we use here Cartesian coordinates R X X X= ( , , )1 2 3  and 
r x x x= ( , , )1 2 3 ): 

∂
∂

∂
ρ∂

2

2

X

t

P

X
k

k

= −          (3) 

We change the arguments in the equation of motion written in the Eulerian form using 
formula: 

∂
∂

∂
∂

∂
∂x

X

x Xi k

k

i k

= ∑         (4) 

And we get finally: 
∂

ρ∂
∂
∂

∂
∂

P

x

X

x

X

ti k

k

i

k= −∑
2

2         (5) 

For the non-perturbed blast wave the system of equation (1),(2),(5) looks as follows: 
∂
∂ ργt

P
( ) ,= 0          (6) 

ρ
ρ

∂
∂

0
1

1

( )r R R

r r

s

s=
−

−          (7) 

∂
ρ∂

∂
∂

∂
∂

P

r

R

r

R

t
= −

2

2          (8) 

The corresponding spherically (or cylindrically) symmetric self-similar solution of Eqs. 
(6-8) is well known. It can be written using the shock wave radius value S(t) ~ t2/(k+s+2 and 
functions x(z), p(z), r(z) of the self-similar argument z=r/S,: 
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R t r Sx z

P t r S S p z

t r S z

0

0
0 2

0
0

0

0

2

1

1

1

( , ) ( ),

( , ) ( ) � ( ),

( , ) ( ) ( ),

,

=

=
+

= +
−

=
=

γ
ρ

ρ γ
γ

ρ ρ

θ
ϕ

Θ
Φ

        (9) 

where x, P, r should satisfy to ordinary differential equations: 

ρ γ
γ
ρ

γ

γ

=
−
+

=

′ = −

+1
1

z

x w

p
x z

p

p

ab

w

s k

s

s s

,

,

;

        (10) 

With boundary conditions: x(1)=p(1)=r(1)=1,   
Here we denote:  

w
zdx

xdz

x z

z

a w z w w
s k

b
wz

px

s k

= =
′

= ′ + − +
+

=
+ +

,

( )( ),

;

1
2

1

2

γ
γ

      (11) 

We insert to the system of equations (1),(2),(5) hydrodynamic values corresponding to the 

perturbed blast wave (
~

,
~

, ~R P ρ ) presented as sums of the non-perturbed blast wave values 

( R P, , ρ ), and small perturbations ( R P1 1 1, , ρ ): 
~( , ) ( , ) ( , ),
~

( , ) ( , ),
~

( , ) ( , ),
~( , ) ( , ) ( , ),
~( , ) ( , ) ( , ).

R t r R t r R t r

t r t r

t r t r

P t r P t r P t r

t r t r t r

= +

= +

= +

= +
= +

1

1

1

1

1

Θ Θ

Φ Φ

θ
ϕ

ρ ρ ρ

       (12) 

Also we suppose that an angular motion is the potential one: 

Θ Φ1
1

1
1= =

∂
∂ θ

∂
∂ϕ

F F

cos
, ,       (13) 

and that supposition will make the Jacobian being equal to: 
d R R

d r

R R

r r
F

R R

r r

3
1

3

2

2 1

2
1

21
( )

( )
+

= + +
∂
∂

∂
∂θϕ∆      (14) 

We insert expressions (12,13) to the system of equations Eqs.(1,2,5), and after finishing 
linearization procedure we get the following equations for perturbations:  

Equation of entropy conservation: 

∂
∂

γ
ρ
ρt

P

P
( )1 1 0− =         (15) 

Continuity equation: 
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ρ
ρ

∂
∂
∂
∂

θϕ
1

1

1
1

1

1

1

0+ + =

−

−

−

−

∆ F

R R

r r
R R

r r

s

s

s

s

( )

      (16) 

Angular component of the equation of motion (here we denote: �R
R

t
≡

∂
∂

): 

P
R R R F1

1
2

1 0
ρ

+ + =�� ( � �)        (17) 

Radial component of the equation of motion: 
∂
ρ∂

∂
∂

∂
∂

ρ ∂
ρ ∂

P

r
R

R

r
R

R

r

P

r
1 1

1
1
2 0+ + − =�� ��       (18) 

Here and after S stands for the non-perturbed shock front radius, S(t) ~ t2/(k+s+2), and S1 

stands for the value of the shock front radius perturbation. 
Boundary conditions for the system of equations Eqs.(15-18) should be put on the shock 

front (r=S+S1 ) using the following scheme: 
( )( , )

( )( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( )

( , ) ( , )

R R r S S t S S

R R r S S t R r S S t R r S S t

R r S S t R r S t S
R

r
r S t S S

wx

z
z

R r S S t R r S t

+ = + = +
+ = + = = + + = +

= + = = + = = + ⋅ =

= + = =

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1
∂
∂

 (19) 

From  Eqs.(10,11) we have:  

w x( ) , ( )1
1

1
1 1=

−
+

=
γ
γ

.        (20) 

Hence we get: 

R r S t S1 1

2

1
( , )= =

+γ
       (21) 

The next front conditions are calculated in the same way. We get: 
F r S t

F r S t
S

S
S

1

1 2 1

0

2

1

( , )

� ( , )
�

= =

= = −
+γ

 

( )

P r S t
S

S
S s a

r S t
S

S
a

1
0

2

1

0 1

2

1
2 2 1

1

1
1

( , )
�

( ( ))

( , ) ( )

= =
+

+ + +

= =
+
+

ρ
γ

λ

ρ
γ ρ
γ

    (22) 

According to Ref. 2 the perturbations are expanded in spherical harmonics 
Y P enm nm

im~ (cos )θ ϕ ( or in axial harmonics einϕ  in the cylindrical case), and  the components of 
expansion are presented in the self-similar form.  

Shock wave radius perturbations are expanded too: ( S S Ymn mn1 1= ∑ ). We suppose that 

the components of expansion are power functions of time for each harmonic number: 

S S tmn
k smn

mn

1
1

2 1

2~ ~
( )

λ
λ

+
+

+ + ,       (23) 

Here λmn is a complex number. 
So we write: 
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S
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∂ θ ϕ
∂ θ

ϕ
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∂ θ ϕ
∂ϕ

λ

λ

∑

∑

∑

= +
+

= +
+

Θ

Φ

2

1

1

2

1

1

1 1

1 1

 (24) 

 
1.2 Formulating an eigenvalue problem.      
 
At first, using boundary conditions we integrate adiabatic equation (15) . We get  (here 

and after we omit indices n,m of p1, r1, x1, f1, l, S1 ): 
P

P
s z

S

S
1 1 12 2− = + +γ

ρ
ρ

λ λ( )       (25) 

After that using the assumption of the self-similarity (24) we convert the system of 
equations (16), (17), (18), (25) into the system of ordinary differential equations. We write it 
having excluded ρ1 : 

bp
zd

dz
sw x n n s wf s k w1 1 11

1

2
2 2+ + + − + − =

+
+ + +( ) ( ) ( ) ,λ

γ
γ

λ  (26) 

wp ax
zd

dz
w

s k zd

dz
f1 1 12

2

2
0+ − + +

+ −
=( ) ,     (27) 

[ ( ) ] ( ) ( )

( ) ;

zd

dz
s k s k w p

zd

dz
w

s k zd

dz
s k a x

n n s af

+ + + − + − + + +
+ −

− + −





+

+ + − =

λ 2 2
2

2
2

1 0

1 1

1

28) 

With boundary conditions as follows: 
- On the right edge z=1 (shock front): 
f

f

x

p
s k

1

1

1

1 2

1 0

1 1

1 1

1 2
6 2 3 1 1

1

( ) ,

( ) ,

( ) ,

( )
( ) ( )

( )
;

=
′ =

=

= +
+ − − + +

+
λ

γ γ γ
γ

    (29) 

- On the left edge z=0 (at the center): 
 p1(1)=0;         (30) 
The system of equations Eqs.(26-28) is of the forth order one, so four edge conditions 

Eqs.(29) construct the complete set of boundary conditions necessary for solution. The fifth 
edge condition Eq.(30) at z=0 converts the problem of solving the Eqs.(26-29) to an eigenvalue 
problem. Solving this problem includes calculation of the complex exponent λ as eigenvalue. 
Coefficients in (26)-(30) are independent of index m, so λ ≡ λ(n) . 

1.3 Numerical solution results 

In general the case γ> 1 the eigenvalue problem Eqs.(26-30) was solved numerically. The 
values of the complex exponents λn were calculated in the wide region of γ , and n for spherical 
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(s=3) and cylindrical (s=2) blast waves. The values of k were k=0,-1,-2. The results are 
presented on Figs.1,2. 

The instability region on the plane n - γ  is shown on Fig.3. Blast wave is unstable in the 
right lower corner of the chart. If the function γ0(n) corresponds to the boundary line of the 
instability region then  the critical value of specific ratio γc   can be defined: 

1.
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Fig.1  Values of complex exponent λ in the cases of spherical (s=3) and cylindrical (s=2) 

blast wave in a gas which initial density ρ0 is power function of radius: ρ0~rk for a number of 
values of gas specific ratio γ. For the case γ=1 values are calculated using analytic expressions 
Eq.(36). 
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Fig.2 Instability region on the plane  n-γ 
 

1.4 Analytical solution results 
Let us consider some cases when eigenvalue problem has an analytical solution  . 
1.4.1 Thin shell approximation:   γ -1 << 1 
The problem has an analytic solution in the case when the value of g is close to unit. In 

this case we let in the equations (26)-(30): γ = 1, w = 0, a=-(s+k)/2, b=0.  
We get: 

( ) ,
zd

dz
x+ =λ 1 0         (31) 

−
+

+ +
+ −

=
s k

x
zd

dz

s k zd

dz
f

2

2

2
01 1( ) ,      (32) 

( ) (( ) ( ) )

( )
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dz
s k p
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dz

s k zd
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x

n n s
s k

f

+ + + + +
+ −

+ + −
+

−

− + −
+

=

λ 1 1

1

2
2

2
2

1
2

0
 (33) 

with boundary conditions: 
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       (34) 

Solution of (31)-(34) is as follows: 
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(35) 

-and after simple calculations we get the equation for λ ( note that it is possible to get this 
equation in a simpler way applying conservation laws for calculating thin layer motion1): 

( ) ( )
( )

( )( )

( )
( )

;

λ λ λ λ+ + +
+ +

−
+

+ + +
+ +

+

+ + −
+

=
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s k s s k

s k
s k

n n s
s k

2 2

2

2
2 2

2
2

1
4
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 (36) 

One of two pairs of the complexly conjugated roots of this equation with the greater real 
part is the solution of the problem in the case n>1. 

In the case n=1 the equation (34) has four real negative roots. The two of them satisfying 
boundary condition at the center are solutions: 

One of these solutions is determined with formula:  

λ = −
+s k

2
,         (37) 

this case corresponds to explosion direct motion with momentum conservation. This 
value of l can be calculated from dimension consideration. 

The other is the greater root of equation: 

λ λ2 3 3 2

2

3

2
0+

+ +
+

+ +
=

s k s k k( )( )
     (38) 

it is equal to -1 if  k=0; this case corresponds to the blast being displaced.  
.We can continue analytical calculations if we take into account next terms of expansion 

of solution of eigenvalue problem (26)-(30) by powers of the small parameter (g-1): 
λ=λ(0)+(γ-1) λ(1) ,          (39) 
where λ(0)  is determined by (36) 
In this case we get for the first approximation terms the equation system with constant 

coefficients analogous to (31) but with non-uniform equations. The right parts of these 
equations are of the first order of smallness. This equation system is integrated quite similar to 
that was done for (31,32), and (omitting cumbersome transformations) we arrive to the 
following formula2,7 for the first order correction of l (to avoid bulky expressions here we 

present only the special case s=3, k=0) ; here b(a) stands for integral β α
α

( ) =
+∫

t dt

t10

1

, and l is 

from (36)): 
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λ
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1
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5
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=
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−
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−
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−

+
(40) 

The results of (39),(40) are in a good agreement with the results of numerical calculation 
for the imaginary parts of l and in the worse one for the real parts. For example, in the case: 
s=3, k=0, n=8, γ=1.2, we have2: λanalyt i= +015 314. . , and λnumer i= − +0 30 307. . . 

1.4.2 The first harmonic:   n=1 
Note that both solutions (35,38): λ = -1, and λ = -(s+k)/2,  are independent of γ, and they 

are solutions of eigenvalue problem (26)-(30) in the general case of an arbitrary γ>1: 
1) The displacement solution.  λ=-1 
We can verify it by a direct substitution of the following expressions to the system of 

equations (26)-(28): 
n k

f
z

x

x
z

x
w

p a

= = = −

=
+

−

=
+

−

=
+

1 0 1

1

2
1

1

2
1

2

1

1

1

, , ,

( )

( )

λ
γ

γ

γ

       (42) 

So λ=-1 is the correct solution for the case: n=1, k=0 

2) n
s k

= = −
+

1
2

, ’λ  

We subtract equation (27) from equation (28) multiplied by (s-1), and integrate the result. 
Then we get: 

p
zd

dz
w

s k
x

zd

dz
w

s k
f1 1 12 2

0+ + +
+

+ + +
+

=( ) ( )    (41) 

This equation together with Egs.(25,27) forms equation system. It can easily be shown 
that all solutions of this system have the required convergence at the center independently of 

shock front boundary conditions. So λ = −
+s k

2
’ is the correct solution of the eigenvalue 

problem for n=1. 
 
1.4.3 Investigation of the features of the solution in the limit n→∞. 
 
The next case of analytical approach to solving the eigenvalue problem is a short 

wavelength approximation: n>>1. In this case we seek for the solution, which looks like: 

exp(
( )

)
q z dz

z
∫ , where |q| ~ |l| ~ n >> 1.     (43) 

We substitute so defined values to Eqs. (26-28), remove all terms of the lowest order, and 
get the following equation system: 
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bp q x n wf w

wp q f

q p q x

1 1
2

1

1
2

1

1
2

1

1

0

0

+ + − =
+

+ =

+ + =

( ) ,

,

( ) ,

λ
γ

γ λ

λ
     (44) 

and boundary conditions: 
x z

f z

zd

dz
f z

p z

al q

1

1

1

1

1 1

1 0

1 1

1 2

0

( ) ,

( ) ,

( ) ,

( ) ,

Re ( ) ,

= =
= =

= =

= =
>

λ

        (45) 

Solution  of (44),(45) is as follows: 

x z
q z dz

z
z

f z
q z dz

z
z

p z
q z dz

z

1

2

2
1

1

2

2
1

1
1

1
2

1 1

1
2

1
1

2

( ) (exp(
( )

) ) ln ,

( ) (exp(
( )

) ) ln ,

( ) exp(
( )

)

=
−

∫ − − +

= −
−

∫ − −

= ∫

γ
γ

λ
γ

γ
γ λ γ

λ

    (46) 

where  

λ
γ
γ=

−
+

in
1
1

,         (47) 

and q(z) is the root with a positive real part of the following equation: 
q b q n w2 2 2 21 2 0( ) ,− + + − =λ λ       (48) 

Data of Fig.1 show that formula Eq.(47) is in a reasonable agreement with numerical 
results. We should note also that Eq.(47) has the right limit of n → ∞ , it is in an agreement 
with the corresponding formulas describing perturbation oscillations in plane shock waves.10 

 
2. Evolution of shock front radius small perturbations in the case when the gas 

density before shock front has small perturbation.     
We considered above free oscillations of blast wave . We can develop an analogy 

between the blast wave perturbations and  other oscillating systems and consider the 
perturbations generated by perpetually operating external sources. One of these cases is when 
perturbations of density before shock front ro1 ~ rl+1 take place. This problem was considered 
earlier in Ref. 2. In this case hydrodynamic equation system for perturbations coincides with 
(16),(17),(18),(22) except for continuity equation which has a non-zero right part: 

ρ
ρ

∂
∂
∂
∂

ρ
ρθϕ

1
1

1
1

1

1

1

01

0

+ + =

−

−

−

−

∆ F

R R

r r
R R

r r

r

r

s

s

s

s

( )
( )

( )
      (49) 

and for boundary conditions: 

( )

P r S t
S

S
S s a

r S t
S

S
a

1
0

2

1

0 1

2
1

2 2 1

1

1
1

( , )
�

( ( ))

( , ) ( )

= =
+

+ + +

= =
+
+

ρ
γ

λ

ρ
γ ρ
γ

    (50) 
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Using that we get the self-similar equation system and boundary conditions analogous to 
Eqs. (26)-(30). The difference between eigenvalue problem in this case and stability problem 
considered above is that the role of eigenvalues is played by the ratio of shock front radius 
perturbation to initial density perturbation d: 

d d n

S

S
r

r
= =( , )

( )

( )
;λ ρ

ρ

1

10
       (51) 

The eigenvalue problem is linear of  1/d. The system of equations is the following:: 

bp
zd

dz
sw x n n s wf s k

d
w

wp ax
zd

dz
w

s k zd

dz
f

zd

dz
s k s k w p

zd

dz
w

s k zd

dz
s k ax

n n s af
a

d

1 1 1

1 1 1

1 1

1

1
1

2
2 2

1

2
2

2
0

2 2
2

2
1

1
1

2

+ + + − + − =
+

+ + + +

+ − + +
+ −

=

+ + + − + − + + +
+ −

− + − +

+ + − = −
+

( ) ( ) ( ) ,

( ) ,

( ( ) ) (( ) ( ))

( ) ;

λ
γ

γ
λ

λ

γ

(52) 

Boundary conditions are the same as in (29,30), except: 

p
s k

d1 21 2
6 2 3 1 1

1

1
( )

( ) ( )

( )
;= +

+ − − + +
+

+λ
γ γ γ

γ
 

 
2.1 The forced oscillations of the shock front radius.     
Earlier the case of λ = 0 was considered in Ref. 2. 
In this paper we consider  pure imaginary values of l:  l=iw . The problem is solved 

numerically. The calculated values of |d(w,n)| are presented on Fig.3. The sharp resonance 

pattern (in the vicinity of ω
γ
γ

=
−
+

1

1
n ) is demonstrated forγ=1.2 and the smeared one is 

demonstrated for γ=5/3.  

�
��

��
��

�
�

��
��

��
�

���

�

���
��
�

�

ω

γ=5/3

 
Fig.4a. Resonance patterns |c(ω ,n)| for γ=1.667. Results are normalized to q(0,n):  

c n
q n

q n
( , )

( , )

( , )
ω ω=

0
. (Note that q n

n
( , )0

1 1

2
≅ +γ

γ
 for  n>>1) 
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Fig.4b.  Resonance patterns |c(ω ,n)| for γ=1.2. Results are normalized to q(0,n): 

c n
q n

q n
( , )

( , )

( , )
ω ω=

0
. 

 
Analytical solution can be obtained for n>>1, k=0.  
We again seek solution of (43) type, reduce equation system (52), and get finally the 

following solution: 

q nw
b

d
n

=
−

= −
+

1
1

1 1
2

,

γ
γ

        (53) 

This result is in a good agreement with the well-known formulas for front perturbations in 
a stationary shock wave (Ref.11). 

 
3. Stability of the blast wave in a non-ideal gas.    
For the sake of convenience of comparison with an experiment we however need a 

solution of the stability problem for the case of non-ideal gas. In actual practice gas adiabatic 
exponent is a function of density and temperature: it’s getting lower while degree of ionization 
is increasing, that is while density is lowing or temperature is rising. In Ref.12 the authors 
considered the stability problem for one of the cases of blast wave in non-ideal gas, namely, the 
only case when the blast wave in the non-ideal gas is self-similar: we supposed that the gas 
adiabatic exponent γ was a function of the gas density (i.e. γ was independent from the gas 
energy). In this case we can use the self-similar technique for solving the blast wave stability 
problem. 

In Ref.13 the authors supposed that the gas equation of state (EOS) was as follows:  
P=(γ*(ρ)-1)ρ         (54) 
where coefficient γ* was a two-parameter function of ρ: 

γ ρ
γ
γ γ
γ

ρ
* ( ) − =

−

−
−
+

1
1

1
1

c

f c

f

       (55) 

Here parameters: γc,γf stand for values of the gas adiabatic exponent in the blast center 
and at the shock front. 
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The eigenvalue problem in this case is the same (See Ref.13) as in Eqs.(26-31). Fig.4 
presents results of numerical solution of the eigenvalue problem.  

5Hλ �Q��IRU�γ,γf� ����������������

����

��

����

�

���

�

���

� �� �� �� ��

+DUPRQLF�QXPEHU�Q

5
H
�λ

���

���

,Pλ �Q��IRU�γ,γf� ����������������

�

�

�

�

�

�

�

�

�

�

� �� �� �� ��

+DUPRQLF�QXPEHU�Q

,P

λ

���

���

 
Fig.4 The components of complex eigenvalue λ for some sets of values of parameters of 

gas EOS. Heavy curves correspond to the cases of ideal gas with 
γf=γc=γ=1.10,1.11,1.12,…1.20. the other lines correspond to the cases when γf>γc. 

 
Conclusion 
Blast wave perturbation evolution was considered. The solutions obtained have 

applications in laboratory physics and astrophysics; they also can serve the tests for elaboration 
of the 2D and 3D hydrodynamic codes.  

Stability of some cases of spherical or cylindrical blast wave was considered using self- 
similar approach in the unified manner. Namely, stability of the cases in which gas density 
before shock front was a power function of radius (with power exponent being equal to k) was 
considered. Blast wave small perturbations were expanded in spherical harmonics. The 
perturbation value was supposed to be a power function of time (with complex exponent), 
stability problem was reduced to eigenvalue problem, and the increments of perturbation 
growth and periods of oscillation were calculated as the eigenvalues for each harmonic number. 
The calculations were made numerically both for spherical and cylindrical blasts for a large set 
of blast wave parameters: gas specific heat ratio γ, harmonic number n, value of k. The 
instability region on the plane n - γ  was determined. The critical value of specific heat ratio γc  
was calculated for each case considered. 

The evolution of perturbations generated by perpetually operating external sources was 
considered too. Namely, there were considered the forced oscillations of shock front radius 
perturbations caused by a presence of spatially oscillating perturbations of initial gas density. 
The eigenvalue problem in this case was formulated using the self-similar technique.  

4. The short wavelength approximation was used to obtain an analytical solution of 
eigenvalue problem. It was shown that the obtained solutions agreed with the corresponding 
solutions describing plane shock wave perturbations. 

5. The analytical solutions of stability problem were also obtained in the case of values of 
g being close to unit. In this case expansion of the solution by powers of γ-1 was used. The 
terms of the zero order, and the first order of negligibility were calculated. It was shown that 
they were in a reasonable agreement with the numerical results.  

6. The spherical (or cylindrical) blast wave stability was considered using the self-similar 
approach. Using this technique helped us to reduce rather complicated 3D hydrodynamic 
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problem of small perturbation evolution to the simpler eigenvalue problem. Blast wave should 
satisfy two conditions to be studied using this approach: it should be self-similar and 1D 
solution for this blast wave should be smooth at the center. A sound speed should tend to 
infinity, and a particle velocity should be negligible compared with the sound speed at the 
center. 

The main assumptions of the self-similar approach are: 
- Pattern of the perturbation evolution is a self-similar one.  
- The value of pressure small perturbations tends to zero at the center. 
In the spherical case one more assumption was made. It is: 
- Pattern of an angular motion is a potential one. 
It seems to us that all three these assumptions were proved in experiments (see Ref. 4 

where perturbation oscillation period was measured and the period value proved to be in a good 
agreement with the self-similar theory results). But for the better proof of the third assumption 
we need direct computer simulation of blast waves using 3D hydrodynamic codes.  
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