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Abstract
The growth of a single-mode perturbation is described by a buoyancy-
drag equation, which describes all instability stages (linear, non-linear 
and asymptotic) at time-dependant Atwood number and acceleration 
profile. The evolution of a multi-mode spectrum of perturbations from 
a short wavelength random noise is described using a single 
characteristic wavelength. The temporal evolution of this wavelength 
allows the description of both the linear stage and the late time self-
similar behavior. The model includes additional effects, such as shock 
compression and spherical convergence. 
Model results are compared to full 2D numerical simulations and 
shock-tube experiments of random perturbations, studying the various 
stages of the evolution.



Ideal Model Requirements
• Calculate mix region for:

- general acceleration profile (RT and RM).
- all instability stages (linear, early nonlinear, asymptotic)
- general geometry (planar, cylindrical, spherical)
- compressibility and coupling to 1D flow.
- ablation.

• Describe internal structure of mixing zone:
- density, temperature and pressure of every material.
- degree of mixing.

• Feedback to 1D simulation:
- material flow.



Definitions
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Layzer model

• Single mode (periodic array of bubbles and spikes).

• Describes all instability stages.

• Valid for a general acceleration profile.

• Limited to A=1.



Buoyancy-drag equations
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•Single mode (periodic array of bubbles and spikes).

• Describes only asymptotic stage.

• Valid for a general acceleration profile.

• Valid for every A.



New model for single-mode 
perturbation
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• We combine Layzer model with buoyancy-drag equations.

• Ca, Cd, Ce are determined from Layzer model for A=1, and 
assumed to be Atwood independent.



• Linear stage:

•Asymptotic self-similar behavior:

•Transition from linear to asymptotic is at:

Multimode evolution
Mixing fronts (bubbles and spikes) are described 
by one characteristic wavelength: <λλλλ>=<λλλλBUB>.
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Model properties
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• Linear stage: 
reproduces theoretical result (first order):

• Early nonlinear stage: 
for A→1, correct to second order (Layzer model) 
• Asymptotic stage:
buoyancy-drag equation for all A.

Limited to planar geometry and 
incompressible flow.



1D Hydrodynamic coupling
The dynamic front equation is solved coupled to the 1D 

lagrangian motion:
- Change in Atwood number:

- 1D Lagrangian “drift” of the mixing zone boundaries:
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Corrections required for non-planar geometry
Non-planar geometry introduces two effects:

• change in amplitude due to 1D motion (Bell-Plesset)
- included in 1D coupling to lagrangian flow.

• Change in wavelength (conservation of wavenumber,      ).
- geometric term added to wavelength equation:
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Experimental results
(random initial conditions)



2D numerical simulations
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Good agreement between mix 
model and 2D simulation

Bubble front

Spike front

1D interface

2D Compressible Simulation
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Model agrees with 
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Summary
• Layzer model and buoyancy-drag equation have been combined to 
describe all instability stages for all Atwood numbers and a general 
acceleration profile.

• Multi-mode spectrum is described by one characteristic wavelength.

• 1D compressibility and scale change effects are introduced through 
Lagrangian “drift” of the mixing zone boundaries and by time 
dependant Atwood number.

• Model results have been compared to experiments and to full 2D 
numerical simulations.

• Non-planar geometry may be introduced by modifying 
characteristic wavelength.


