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Background/Goals

• Models of Rayleigh-Taylor and Richtmyer-Meshkov mixing
layers are relatively sophisticated.
– Multiphase flow models, turbulent models, hybrid models…

• Additional physical phenomena must be included for many
practical circumstances.
– Material strength, heat flux, evaporation….

• Goal: To develop a simple model to describe the effects of
radiative heat transfer and ablation on a turbulent mixing layer.
– Emphasis is on simplicity--fidelity will be assessed by comparison to

experiment or simulations, possibly motivating additional complications.

– Competition between instability growth rate and ablative growth rate;
depends on the initial scale of the perturbations.



Strategy/Problem Formulation

• Multi-material flow formulation.
– Appropriate for multi-material problems...

• Simple drag model for multi-field interaction.
– May include more sophisticated models later, as needed.

• Radiation diffusion approach.
– For simplicity...

• Simple heat transport model.
– Heat exchange occurs in a thin “skin” of the cold material.

– Heat transfer to cold material leads to ablation, not temperature increase.

– Ablated “cold” material becomes “hot fluid”  (e.g. melting ice in water
etc.)

– Cold material and hot fluid experience PdV work (and temperature
change).



Heat Transfer Model

• Prescription for area for heat transfer per unit volume
– Uniform distribution of “spheres” of varying sizes.

– (Similar to simple spherical-particle model for multi-fluid drag
models?)

• Quasi-steady state for local heat flux at particle surface.

• Model:

• We also have an equation for r (“radius”):
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Two-Field Continuity Equation

• Cold material (1) is heated and becomes hot fluid (2).

• Material exchange rate is related to heat transfer rate, Q.
– More complicated model could be incorporated, involving temperature

increase and then “evaporation.”

• Adjustable rate base on    Cv1 Tc1 + LH1
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Momentum Equation

• Momentum equation
– Changes in momentum enter through pressure and changes in mass

fractions.

• Drag coefficient is based on a simple spherical particle drag
model  (courtesy of B. Kashiwa, T-3)(Note Re is very large…).
– We need additional guidance from simulation or experiment to improve

this model for ablating materials.
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Equations of State (present example…)

• Simple equation of state for sample calculation.
– Model does not require a particular thermodynamic EOS.

– May need better EOS for comparison to experiments.

• Hot fluid (2) has radiation pressure contribution.
– May require radiation pressure and heat transfer/temperature increase in

cold material if Tc is much hotter than T1.

• Pressure equilibration between phases.
– Restrictive assumption-- presents difficulties when temperature

difference is very large….
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Energy Equation

• Energy equations

• Opacity:

• Transmissivity:
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Turbulence Model?

• Current formulation does not have a detailed model for
turbulence.
– Need more comparison to simulations/experiments for motivation

• We could add hybrid multi-phase model.
– Cranfill’s hybrid model, Youngs model etc.

• Modification of turbulence model for ablated materials?
– Fluctuating velocity is not solenoidal, pressure fluctuations tied to

radiation (i.e., opacity....), and material transfer, et cetera.

• Such modifications would require simulations and experiment
for guidance...



Sample Problem

• Problem is statistically one-dimensional.

• Hot fluid (2) is 1.5 keV, cold fluid (2) is 0.2 keV

• Boundary conditions:
– Hot side (left) is constant temperature, no mass flux or velocity.

– Cold side (right) is simple out-flow boundary (dp/dx = 0).

• Pressure equilibration in mixed zone requires some artful
choices.
– Assume that pressure in mixing zone has a smooth transition from hot

side to cold side.

• Choice of constants based on iron properties (and expedience)...



Sample Problem Parameters

• Constants:
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Conclusions

• Model represents a simple, tractable approach to account for
radiation and phase change in a two-phase flow.
– Length scale for radiation transfer (spherical model) is consistent with

the drag model.

– Can be extended to multiple fluids, and more complicated
prescriptions for drag, turbulence, heat exchange.

• Demonstrates ablative phenomenon.
– Have not fully explored parameter regimes.

• We now need detailed comparisons to experiments,
simulations and observations.
– Laser-driven flyer plates, Cepheid variables, Computer simulations.


