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Main Results

1. Buoyancy drag mixing edge motion equations --
Agree with bubble merger model, experiments, FT
simulation and A = 1 theory

Spike -- bubble coupling (Center of Mass)
All drag coefficients determined
Lower than leading order asymptotics
2. Improved two phase mix model equations --
mathematically stable and thermodynamically
determinate
Closure specified from asymptotic analysis
3. Turbulent diffusivity derived from mix model
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Comparison of Bubble Merger Model with Experiments, Simulation

/ ’ (£) = penetration distance of light fluid into heavy

=a, Agt’

0.05-- 0.077 (Experiment)
a, = 0.05--0.06 (Theory)
0.07 (Simulation - tracked)

Bubble height / bubble width = 3.3 (experiment)
= 2.3 (theory)
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A Bubble Merger Model

Statistical Models of Interacting Bubbles

Bubble Merger Models
< > < >
Advanced Retarded Advanced
bubble bubble bubble

Bubble velocity = single mode velocity + envelope velocity

Brookhaven Science Associates BROGNMEATEN
U.S. Department of Energy Center for Data Intensive Computing



Bubble Merger Criterion

Envelope velocity >0 advanced bubble
Envelope velocity < 0 retarded bubble

Remove bubble from ensemble where velocity = 0:
[ single mode velocity[1= [lenvelope velocity |

a,= 05-0.6
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Scaled Variables
r = mean bubble radius

t =time to bubble merger

m

t '=scaled time to merger

dl.': (Ag /V)l/zdl‘
< >* = fixed point expectation
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Renormalization group (RNG) fixed point equation
for bubble radius

dr
— = Ar X merger rate = kr X merger rate

dt
1 1
=kr{ — )=k Ag{— r"”

k = fractional increase 1n radius due

to one merger event; ¢/, = time to merger

2 2
BN e g K
4 ZLl’l’l' * 4 tm' *
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Bubble height variables

k = geometric factor, = .43

h = mean bubble height
h = bubble height separation for merger

h=h+h_ /2

Derive rate equation for h in RNG scaling
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RNG Bubble Height Equation

@ =—ca "+ L+1llg
o 2k 2| ™

C, = terminal velocity coefficient for single (periodic) bubble

Average of three Smeeton and Youngs experiments:

LHS = 0.067: RHS =0.0695;
Fixed Point Calculation = 0.056
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Center of Mass (COM) Hypothesis

- >
Zeom = A com Agt

7
a =—qa A7; 17
COM 60 S y

=~ (Qunless 4 =1

fits data and theory (A =1). a ./ a , =solution of
guadratic equation
a S - S ((X b)
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Mixing Zone Edge Models

Zys (1) = hy =0, Agt?in RT case
Buoyancy Drag equation for Z, ¢ (t):

(IOb,S +klos,b)Zb,s(t) > (IOb _IOS)g _ps,bcb,SZb,S2 /Zb,s

Determine C, ; from RT edge motion theory.
ODE valid for arbitrary acceleration

k =1 from standard fluid dynamics and from
bubble geometry
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Non-leading Order Terms in RT Asymptotics

Z(t)=aq Agt’> + Bt+y
B,y depend on initial data :
to,Zo, Vo

a does not depend on initial data
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Chunk Mix Model

Complete fluid variables for each fluid
--  Mathematically stable equations

Improved physics model for mix
--  Pressure difference forces ~ drag

e Thermodynamics Is process independent

e New closure proposed and tested
--  Zero parameters (incompressible flow)

 Analytic solution for incompressible case
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Multiphase Averaged Equations

Microphysics: U, +0F(U)=0
Macrophysics: U:+0OF(U)=0
(U) #F(U)

F
Fren<U> F(U)
U: +OF,,(U)=0

Closure Problem: Determine F

ren
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Ensemble Averages

Assume two fluids, labeled k=1 (light) and k=2 (heavy). Define

1 if (x,y,2z)1s in fluid k at time t

X (x,y,2,t) = :
X,y ) {O otherwise

Let () denote (ensemble) average.

Microphysics Macrophysics
=(X >
X By = (X,
K + U E[ka =0 aB
t o+ (X, ) =0
Define v*: Thus
(vOX,)=v*0B, astk+U*|]]]I3k =0
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Closure

Assume: Vv* depends on v, and v, and spatially
dimensionless quantities only.

Assume: regularity of v*.
U* = -u, + 1’ U
Theorem: HU, T 14U,

(convex combination) and related expressions for
p* and (pv)*
Assume: all i’s depend on 3, and t only.
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Exglicit Model: Zero Parameters

Exact calculation: & . is fractional linear. Assume same for K
Assume dependence on B, alone. Then

/J q — ﬁk
k

By +clBy
with k’ denoting the other fluid index and c¢/c; = qQ=U or q=p.
With the mixing zone boundaries Z,(t), and velocities V,(t),

v Vi '
C'k :||Vk||9 le:f)—k
k

k .
for incompressible flow. Boundary accelerations Z, (f) must be
must be supplied externally to this model.
Z ,(t) = Drag+buoyancy
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Then

_ z 2 D.u
P (z, t)=p2(21)+jzZkak(g_—Stk)dZ
T k=1
z (D .,u D .vu
Par = P air (Z1)_L1( 5’[2_ [;t1jdz
Brookhaven Science Associates 59 HMHET

U.S. Department of Energy Center for Data Intensive Computing



Asymptotic Expansion in Powers of
M = Mach Number

0™ order = incompressible v,
15t order = correctionv, 3
2" order = incompressible p,, p,

+Vv,[3 correction
2"d order p,, p, = incompressible p,, p,
—> constraint:
“missing” incompressible pressure equation
Also resolves “missing” compressible closure.
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Reduced Models:
Equilibrated Pressures and Velocities

Equilibrated pressures (3 =p)
requires equilibrated velocities for hyperbolic equations.

Equilibrated velocities requires a diffusion term to move
phase particles.

Diffusion can be computed within the Chunk Mix model.

Brookhaven Science Associates BROONHAEWEN

U.S. Department of Energy 25 Center for Data Intensive Computing



RT and RM Diffusion Coefficients

RT diffusion coefficient:

3 3
a a
D 2A2 [182 [ 181 ] _I_ﬁa,lz( 2182 j ]
af+a,5 af+a, 5
RM diffusion coefficient (s = entrainment time, obtained
from solution of ODE):

2 o 2 &)
=% OBs" o1, AEBD, 4
1+7 1+7

- a,f,0, 16,76

a,46,
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Summary: A Predictive Science for Mix

Consistent theory, simulation and experiment for 3D
Rayleigh-Taylor fluid mixing

Determine the mixing zone edge motions for general
accelerations in agreement with experimentand A =1
theory

Lower than leading order asymptotics with explicit
dependence on intial conditions

Improved mix model equations: Stable mathematically and
thermodynamically determinate

Asmptotics defined; closure improved
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