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Main ResultsMain Results

1. Buoyancy drag mixing edge motion equations --
Agree with bubble merger model, experiments, FT

simulation and A = 1 theory
Spike -- bubble coupling (Center of Mass)
All drag coefficients determined
Lower than leading order asymptotics

2. Improved two phase mix model equations --
mathematically stable and thermodynamically

determinate
Closure specified from asymptotic analysis

3. Turbulent diffusivity derived from mix model
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Comparison of Bubble Merger Model with Experiments, SimulationComparison of Bubble Merger Model with Experiments, Simulation

penetration distance of light fluid into heavy====)( tZ b

2Agtbα=

=bα
0.05 -- 0.077 (Experiment)
0.05 -- 0.06 (Theory)
0.07 (Simulation - tracked)

Bubble height / bubble width = 3.3 (experiment)
= 2.3 (theory)
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A Bubble Merger ModelA Bubble Merger Model
Statistical Models of Interacting Bubbles
Bubble Merger Models

Bubble velocity = single mode velocity + envelope velocity

Advanced
bubble

Retarded
bubble

Advanced
bubble
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Bubble Merger CriterionBubble Merger Criterion

Envelope velocity > 0 advanced bubble

Envelope velocity < 0 retarded bubble

Remove bubble from ensemble where velocity = 0:
 single mode velocity =  envelope velocity |

0.5 -- 0.6≈bα
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Scaled VariablesScaled Variables
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Renormalization group (RNG) fixed point equation
for bubble radius

Renormalization group (RNG) fixed point equation
for bubble radius
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Bubble height variablesBubble height variables
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Derive rate equation for h in RNG scaling
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RNG Bubble Height EquationRNG Bubble Height Equation
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= terminal velocity coefficient for single (periodic) bubble

Average of three Smeeton and Youngs experiments:

LHS = 0.067; RHS = 0.0695;
Fixed Point Calculation = 0.056

bc
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Center of Mass (COM) HypothesisCenter of Mass (COM) Hypothesis

fits data and theory (A = 1). αααα s / αααα b = solution of
quadratic equation

αααα s = αααα s (αααα b)
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Mixing Zone Edge ModelsMixing Zone Edge Models

Zb,s (t) = hb,s = ααααbs Agt2 in RT case
Buoyancy Drag equation for Zb,s (t):

Determine Cb,s from RT edge motion theory.
ODE valid for arbitrary acceleration

k = 1 from standard fluid dynamics and from
bubble geometry

( ) ( ) sbsbsbbssbsbbssb ZZCgtZk ,
2

,,,,,, /)( ��� ρρρρρ −−=+
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Non-leading Order Terms in RT AsymptoticsNon-leading Order Terms in RT Asymptotics
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Chunk Mix ModelChunk Mix Model
• Complete fluid variables for each fluid

-- Mathematically stable equations

• Improved physics model for mix
-- Pressure difference forces ~ drag

• Thermodynamics is process independent

• New closure proposed and tested
-- Zero parameters (incompressible flow)

• Analytic solution for incompressible case
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Multiphase Averaged Equations

Microphysics:
Macrophysics:

Closure Problem: Determine Fren
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Ensemble AveragesEnsemble Averages
Assume two fluids, labeled k=1 (light) and k=2 (heavy). Define

.
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ClosureClosure

Assume: v* depends on v1 and v2 and spatially
dimensionless quantities only.
Assume: regularity of v*.

Theorem:

(convex combination) and related expressions for
p* and (pv)*
Assume: all µµµµ’s depend on ββββk and t only.

2112* υµυµυ υυ +=
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Explicit Model: Zero ParametersExplicit Model: Zero Parameters

Exact calculation: is fractional linear. Assume same for .
Assume dependence on alone. Then

with k’ denoting the other fluid index and

With the mixing zone boundaries Zk(t), and velocities Vk(t),

for incompressible flow. Boundary accelerations must be
must be supplied externally to this model.

Drag + buoyancy
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Analytic Solution: Incompressible CaseAnalytic Solution: Incompressible Case
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Asymptotic Expansion in Powers of
M = Mach Number
Asymptotic Expansion in Powers of
M = Mach Number

0th order = incompressible v, ββββ
1st order = correction v, ββββ
2nd order = incompressible p1, p2

+ v, ββββ correction
2nd order p1, p2 = incompressible p1, p2

���� constraint:
“missing” incompressible pressure equation

Also resolves “missing” compressible closure.
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Reduced Models:
Equilibrated Pressures and Velocities

Reduced Models:
Equilibrated Pressures and Velocities

 Equilibrated pressures
 requires equilibrated velocities for hyperbolic equations.

 Equilibrated velocities requires a diffusion term to move
phase particles.

 Diffusion can be computed within the Chunk Mix model.

)( 21 pp =
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RT and RM Diffusion CoefficientsRT and RM Diffusion Coefficients

 RT diffusion coefficient:
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Summary: A Predictive Science for MixSummary: A Predictive Science for Mix

Consistent theory, simulation and experiment for 3D
Rayleigh-Taylor fluid mixing

Determine the mixing zone edge motions for general
accelerations in agreement with experiment and A = 1
theory

Lower than leading order asymptotics with explicit
dependence on intial conditions

Improved mix model equations: Stable mathematically and
thermodynamically determinate

Asmptotics defined; closure improved


