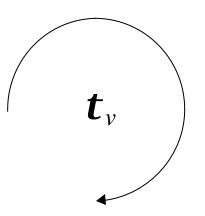
## How to inhibit Rayleigh-Taylor mixing

Robert E. Breidenthal University of Washington

#### **Self-similar flow**



Self-similarity means the next rotation period is always proportional to the current one.

$$\tau_{v}(t + \tau_{v}(t)) = \text{const. } \tau_{v}(t).$$

In other words, the fractional decrease in rotation period per rotation is a constant, independent of time,

$$[\tau_{v}(t) - \tau_{v}(t + \tau_{v}(t))]/\tau_{v}(t) = \text{const.} = \beta.$$

#### **Proof that t<sub>v</sub>(t) must linear if self**

#### similar

Assume

 $\tau_{v}(t) = \tau_{v}(0) + a_{1}t + a_{2}t^{2} + \dots a_{n}t^{n}.$ 

Then

 $[-a_{1}(\tau_{0}+a_{1}t+a_{2}t^{2}+...a_{n}t^{n}) + \text{terms up to}$   $t^{n2}]/(\tau_{0}+a_{1}t+a_{2}t^{2}+...a_{n}t^{n}) = \beta.$ Satisfied iff n<sup>2</sup>-n=0. So n = 0 or 1. Thus  $a_{j} = 0$  for all j >1, and  $a_{1} = -\beta.$ The only possible self-similar evolution is  $\tau_{v}(t) = \tau_{v}(0) - \beta t = \tau_{0} - \beta t.$ 

#### **Example - Inertial subrange**

One eddy 'turnover time'

 $\tau_{\lambda} = \lambda/v_{\lambda} = \ \lambda^{2/3}/e^{1/3} = \ (\lambda/\delta)^{2/3} \ \tau_{\delta}$ 

Time interval from scale  $\lambda$  to  $(\lambda - d\lambda)$ 

 $dt = const.\lambda^{2/3} d\lambda / (e^{1/3}\lambda)$ 

(Kulkarny & Broadwell)

Total elapsed time to reach scale  $\lambda$ 

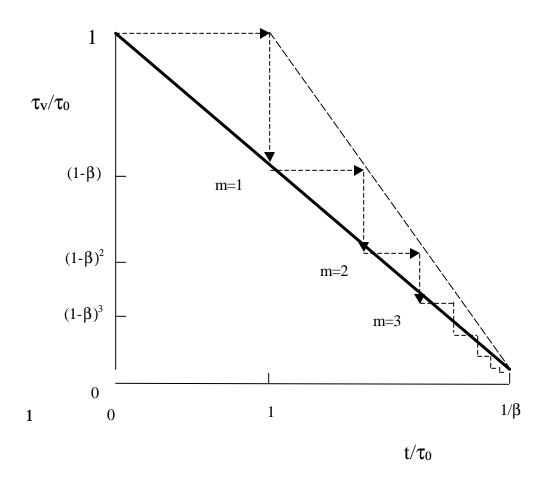
starting from scale  $\delta$  is

$$\mathbf{t}(\lambda) = \begin{bmatrix} 1 - (\lambda/\delta)^{2/3} \end{bmatrix} \tau_{\delta},$$

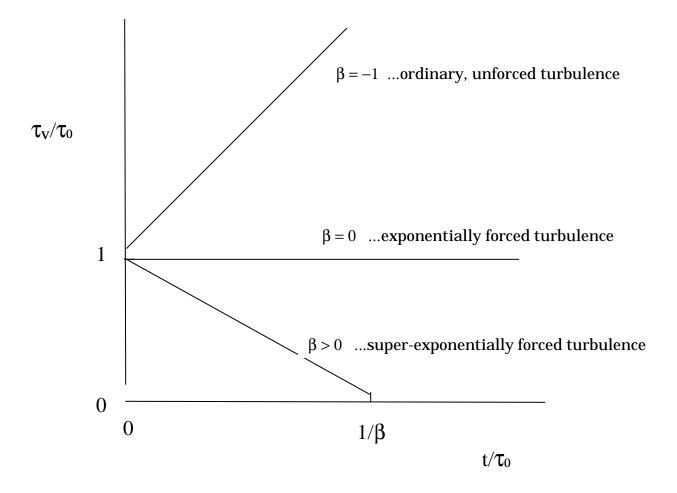
**S0** 

$$\tau_{\lambda}/\tau_{\delta} = 1 - t(\lambda)/\tau_{\delta}$$
 ... linear

in t



Vortex rotation period  $\tau_v(t)$  for  $\beta > 0$ 



Vortex rotation period  $\tau_v(t)$  for all self-similar flows

Vortex stretching

$$D\mathbf{w}/Dt = (\mathbf{\tilde{N}u}) \mathbf{w}$$

Symmetry arguments imply

 $mag((\mathbf{\tilde{N}u}) \mathbf{w}) = c \omega^2$ 

 $D\omega/Dt = c \omega^2$ .

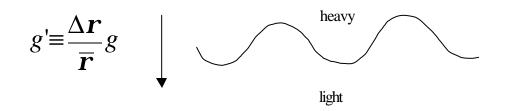
 $\omega(t)/\omega(0) = 1/(1 - ct/\tau_v(0)),$ 

identical to

$$\tau_{\rm v}(t)/\tau_{\rm v}(0) = 1 - \beta t/\tau_{\rm v}(0)$$

for  $\omega = 1/\tau_v$  and  $c = \beta$ .

# **Rayleigh-Taylor**

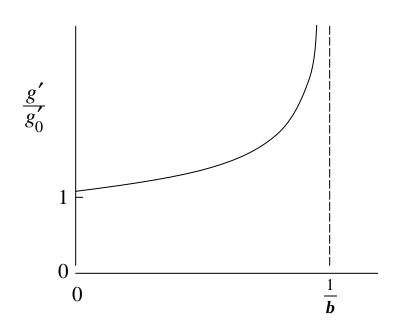


Impose an e-folding time scale  $\tau_v(t) = \tau_0 - \beta t$ .

So force with "super-exponential"

acceleration

$$\frac{g'}{g'_0} = e^{\left(\frac{t}{t_0} - bt\right)}.$$



# How to inhibit Rayleigh-Taylor entrainment?

Instead of constant acceleration, use super-exponential, e.g.

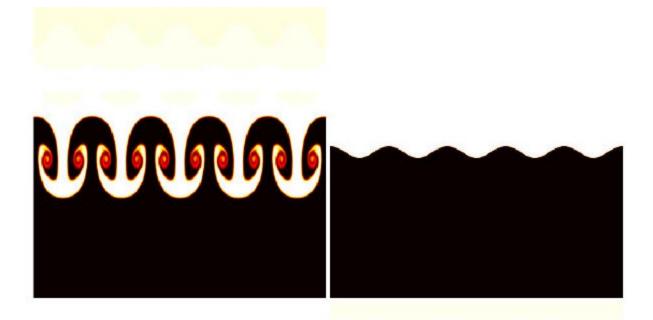
$$\frac{g'}{g'_0} = \exp\left(\frac{t}{t_0} - bt\right)$$

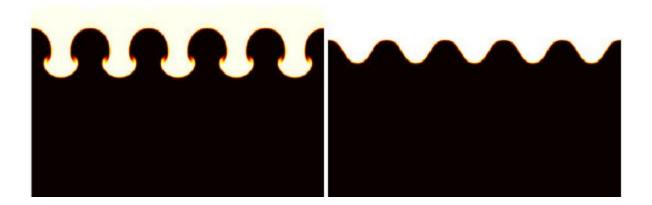
As  $b \rightarrow 1$ , entrainment is inhibited for all perturbation wavelengths  $\lambda > g_0' \tau_0^2$ .

# **2D inviscid simulations**

Christian Anitei

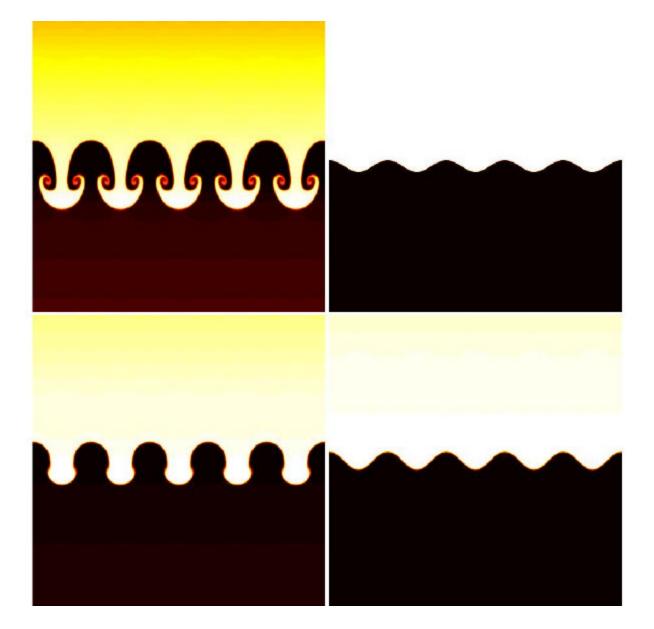
Randy Leveque's CLAWPACK code (suggested by Hamid Johari) Derek Bale James Rossmanith



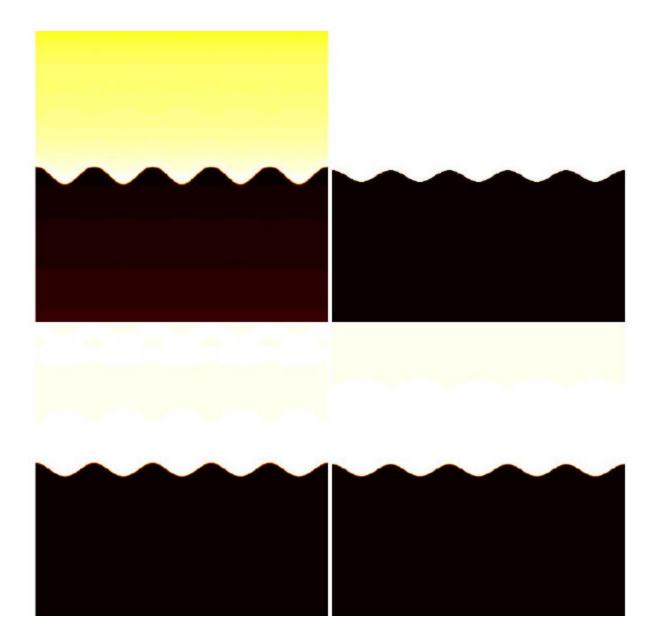


$$\beta = -\infty$$

Time progresses clockwise from upper right

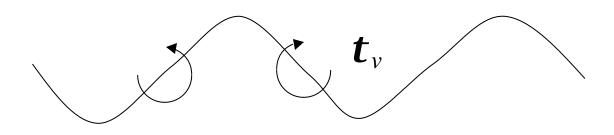


$$\beta = 0$$



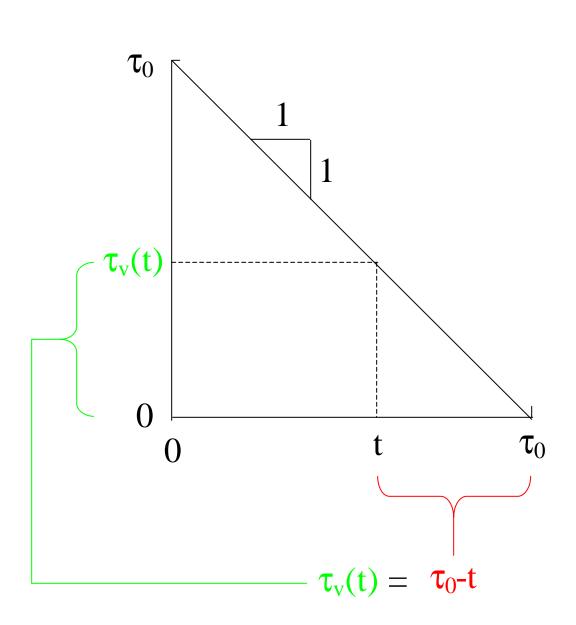
$$\beta = 1$$

## **Physical interpretation**



It takes time for a vortex sheet to roll up. If at every instant, the required roll-up time is just equal to the remaining available time ( $\beta$ =1), there can be no roll up. Even more that this, the acceleration provides a stabilization.





At every instant, the current rotation period is just equal to the remaining time.

#### Conclusions

• For all self-similar turbulence, the vortex rotation period is a linear function of time,

 $\tau_v = \tau_0$  -  $\beta t.$ 

• Entrainment and dissipation are inhibited as  $\beta \rightarrow 1$ .

 For β=1, Rayleigh-Taylor entrainment is suppressed for all wavelengths

$$\lambda > g_0 ' \tau_0^2.$$