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LIGHT FLUID ACCELERATES HEAVY FLUID

INSTABILITY of the interface

TURBULENT MIXING of the fluids

Rayleigh-Taylor instability sustained acceleration (gravity)

Richtmyer-Meshkov instability impulsive acceleration (shock)

Fundamental issues:

•  the cascades of energy

•  the dynamics of the large-scale coherent structure

Coherent structure: a spatially periodic array of bubble and spikes

basic scales: period λ ,  gravity g  (RTI),  initial velocity 0v  (RMI)

time scale Agλτ ~  (RTI) 0~ vAλτ  (RMI)

Atwood number ( ) ( )lhlhA ρ+ρρ−ρ=

density ratio is a determining physical factor in RTI/RMI dynamics

Heuristic models

RTI, traditional approach Agg → Sharp 1984

RMI, buoyancy-drag model ( )( )gAAg +→ 12  for bubbles

Shvarts 1995 ( )( )gAAg −→ 12  for spikes

more formal theoretical approach and a systematic study



INTERFACE active regions passive regions

small scales large scales

intensive vorticity simply advected

large-scale coherent motion scalar fields

time t coordinates ( )zyx ,, free surface ( )tyxz ,,*

( ) +∞<< ztyxz ,,* density hρ=ρ velocity hvv =

( ) −∞>> ztyxz ,,* density lρ=ρ velocity lvv =

scalar function ( ) ( ) ztyxztzyx −=θ ,,,,, *

Conservation laws:

0=⋅∇ v

momentum   ( )( ) ( )( )
00 =θ=θ ρ−∇+=ρ−∇+ llllhhhh gvvvgvvv ��

mass ( ) ( )
00 =θ=θ

ρθ∇+θ=ρθ∇+θ llhh vv ��

no mass flux ( ) ( ) 0
00

=ρθ∇+θ=ρθ∇+θ
=θ=θ llhh vv ��

boundary conditions 0== −∞=+∞= zlzh vv

0≥g  - instability: RTI 0>g , RMI 0=g



10 ≤< A   no significant energy cascade   potential approximation

( ) ( )lhlh Φ∇=v

•  Fourier expansion
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•  Spatial expansion at a highly symmetric point of the interface
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Conservation laws ji yx 22 ∞==+ ,...2,1Nji

are reduced to dynamical system of ODE in terms of

surface variables ( )tijξ and
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•  Local dynamics at any time t; the length scale λ  is unchanged

•  Multiple harmonics analysis, ∞= ,...2,1,0m

•  Desired accuracy, ∞==+ ,...2,1Nji

•  3D flows with general type of symmetry and 2D flows



2D Rayleigh-Taylor and Richtmyer-Meshkov instabilities

N=1: ( ) 2
10

* xtzz ζ≈− principal curvature ( )t1ζ

( ) ( ) lh gMMMgMMM ρζ+−ζ−=ρζ+−ζ+ 1
2
10111

2
1011 2~~2~22 ����

( ) ( ) lh MMMM ρ+ζ−ζ=ρ−ζ−ζ 2~~323 21112111
��

no mass flux:    ( ) ( ) 02~~323 21112111 =ρ+ζ−ζ=ρ−ζ−ζ lh MMMM ��

Layzer-type expansion

amplitudes 1Φ  and 1
~Φ

Regular asymptotic solutions

A=1 Layzer 1955

Rayleigh-Taylor bubbles time scale Agk1=τ

τ<<t ( )τζ tv exp~, 1

τ>>t 61 AkL −=ζ=ζ kAgvL 3=

re-scaling Layzer-type steady bubble A=1



Richtmyer-Meshkov bubbles time scale 01 Akv=τ

τ<<t ( )( )τ−=ζ tAk1 ( )τ−=− tvvv 00

τ>>t 61 AkL −=ζ=ζ ( ) AktAvL 31 2−=

Singular asymptotic solutions

A=1 Zhang 1998, Abarzhi 2000

Rayleigh-Taylor spikes time scale Agk1=τ

τ<<t ( )τζ tv exp~, 1

τ>>t ( )( )( )2
1 23exp τ≈ζ Atk tgv −≈

Richtmyer-Meshkov spikes time scale 01 Akv=τ

τ<<t ( )( )τ−=ζ tAk1 ( )τ−=− tvvv 00

τ>>t ( )( )2
1 exp AtCk τ≈ζ ( )( )2

0 exp AtCCvv τ≈−

finite – time singularities:

Baker, Meiron 1980s, Moore 1980s, Tanveer 1990s

!!! Layzer-type expansion requires

MASS FLUX through the interface



NON-LINEAR REGULAR ASYMPTOTIC SOLUTION

NO MASS FLUX through the INTERFACE

1. Non-linearity is non-local

2. Interplay of harmonics bubble shape singularities

3. Multiple harmonics analysis

4. The bubble shape is free principal curvature

5. Family of regular asymptotic solutions with no mass flux

through the interface

6. The fastest solution in the Family physically dominant

7. Family of asymptotic solutions at A=1 in 2D RTI (Garabedian)

and 3D RTI and 3D/2D RMI (Abarzhi)

Family of regular asymptotic solutions

Rayleigh-Taylor bubbles, 3D/2D:

τ>>t ( )Avv ,1ζ=

the fastest solution in the family Aζ=ζ1 Avv =

Richtmyer-Meshkov bubbles, 3D/2D

τ>>t ( ) ( ) tALtAvv ,,, 11 ζ=ζ=

the fastest solution in the family Aζ=ζ1 tLvv AA ==

!!! lowest-order harmonics 11
~,ΦΦ are dominant



2D Rayleigh-Taylor bubble

τ>>t Aζ Av

1≈A , ( ) ( )( )8116 AkA −−−≈ζ , ( )( )161313 AkgvA −−≈

0≈A , ( ) 312 AkA −≈ζ ,             ( ) kAgvA 323 23≈

!!! For 10 ≤< A , velocity Av  is quite close (10-15%) to

kAgvL 3= traditional empirical approach

( ) kgAAvD 312 += drag model

Bubble curvature is a more sensitive parameter

2D Richtmyer-Meshkov bubble

τ>>t 0=ζ A AktvA 23=

!!! Agreement with multiple harmonic analysis at A=1 (S.A. 2000)

!!! Qualitative agreement with experiments

RM bubbles decelerate RM bubbles flatten

( )3123 2Avv LA −=

ktCvv LA ~, ( )τ∆ tCh ln~

!!! Bubble curvature is a more sensitive parameter

!!! 0→A  and ( ) ∞→τt ( ) 1>>ktv



SIMULATIONS

Front Tracking method FronTier (Glimm, 1988)

•  2D compressible adiabatic Navier-Stokes equation

Euler equations augmented viscous forces and heat flux

•  weakly compressible fluids

•  contribution of viscous and thermal terms is small to yield a

slightly stabilized but nearly inviscid calculations

mesh refinement: 80 x 800, 160 x 1600, 320 x 3200

A < 0.05 slow evolution no satisfactorily late-time convergence

A > 0.85 certain numerical restrictions late-time dynamics

0.3 < A < 0.8

Nonlinear regime

Bubble: terminal velocity accompanied by slight oscillations

oscillations: small amplitude sensitive to A

A > 0.7: terminal velocity

Comparison

numerical data quasi-terminal regime for each A

averaged values deviations 3-8%



2D RTI

Dependence of the quasi-steady velocity on the Atwood number.

kAgvL 3=  is the velocity of the Layzer-type bubble,

( )AAkgvD += 123  corresponds to drag model, and

Av  corresponds to nonlinear solution with no mass flux through

the interface.
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2D RTI:

Dependence of the curvature of the quasi-steady bubble on the

Atwood number. The curvature of the Layzer-type bubble is

6AkL −=ζ ; the curvature corresponding to the nonlinear

solution with no mass flux is Aζ .

A

ζ1/ k

ζL

ζA

ζ / k

A

ζL

ζA



LIMITATIONS:

NON-LINEAR SOLUTIONS are “QUASI-STEADY”

vorticity energy cascade time-dependence

0→A applicability of the theory

NON-LINEAR SINGULAR ASYMPTOTIC SOLUTIONS

1≈A finite-time singularities

1<A vorticity energy cascade

small-scale structures dispersive properties of the flow

ADVANTAGES:

3D Rayleigh-Taylor and Richtmyer-Meshkov instabilities

for fluids with a finite density contrast

!!! CHAOTIC REGIME

RTI width of the mixing zone 2Agth α≈

re-scaling Agg → mass flux ( )Aα=α



CONCLUSIONS

1. Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids

with a finite density contrast in 3D and 2D

2. Analytical solutions for the conservation laws

3. Layzer-type solution in RTI/RMI, re-scaling

4. Layzer-type approach requires mass flux through the interface

5. Approximate nonlinear solution with no mass flux

6. Parameters of the RT and RM bubbles

7. RT bubble is curved, RM bubble is flat

8. The bubble curvature is a more sensitive parameter than the

bubble velocity

9. Good quantitative agreement between theory and simulations in

RTI

10. Comparison with heuristic models

11. Limitations


