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LIGHT FLUID ACCELERATES HEAVY FLUID
misalignment PRESSURE and DENSITY gradients
INSTABILITY TURBULENT MIXING

Rayleigh-Taylor instability sustained acceleration (gravity)
Richtmyer-Meshkov instability impulsive acceleration (shock)

» thermonuclear flashes on surface of stars; supernova explosion

* inertia confinement fusion; interaction of laser with matter

Basic objective: reliable description of turbulent mixing

Fundamental issues:
 the cascades of energy
 the dynamics of small-scale structures

 the dynamics of the large-scale coherent structure

Coherent structure

an array of bubble and spikes periodic in the plane

normal to the direction of acceleration (shock)

» Dynamics of 3D and 2D nonlinear structuresin RMI

» Properties of the 3D-2D dimensional crossover in RM|



INTERFACE activeregions passive regions

Areft?® small scales large scales
intensive vorticity simple advection

|arge-scale coherent motion scalar fields

spectral approach group theory

Abarzhi*** (RTI)

Group theory
coherent structure periodicity

group of invariance 17 plane crystallographic symmetry groups

G trandationsin the plane + rotations + reflections

The COHERENT STRUCTURE is OBSERVABLE
» A significant part of the fluid energy is concentrated in the
coherent motion
aDOMINANT mode K governs macroscopic dynamics

» The structureis stable under modul ations

K+&:  o(K +8)=(K)+ F(K)E? K o -K

a scalar macroscopic function

G isasymmor phic group with inversion in the plane

3D: p6mm, p4mm, p2mm, cmm, p2 2D: pmll



LARGE-SCALE COHERENT MOTION
timet potential CD(X, Y, Z,t) free surface Z (x, y,t)
AD =0, 0P |, =0

0z .. 0P __ 0O 1im) _
S rozoe-—| =02, +E(D<D) +g(t)4_,. =0

g = 0 - instability: RT g>0 RM g=0

Initial conditions: z (X, y,to) V(X, y,to)
length scale A(~Amx)  timescale T~M/|vg)

Symmetry: periodic, symmorphic + inversion in the plane (X, y)

difficulty SINGULARITY inter play of harmonics

2D RTI: Taylor'®®, Fermi'®? Layzer'®®, Garabedian™’,

Birkgoff®’, Zuffiria**®, Inogamov**®, Tanveer’®*, Hazak'**’

3D RTI: Abarzhi**®

LOCAL EXPANS ONS ASYMPTOTIC SOLUTIONS

2D & 3D RMI: Shvarts®®, Inogamov'*®, Mikaelian'*®,

Zhang™®, Abarzhi®®®

L ayzer-type approach single-mode approximation




» Expansion interms of orthogonal functions:

o :élcbn(t E\/—exp%yn 7,(t)) +|zk rn. %r %

irreducibl e representations of group G wave-vectors K, Gy

project operators Fourier expansion

» Loca expansion at a highly symmetric point of the interface
x=0,y=0,z= z(t):

2 (¥ )=2(0)+ TV, N=i+]=12.0

i+j=1

Dynamical system of ordinary differential equations

iDij (M, M,2)x%y? =0 %Kij Gm, ey =0

i+)=1 i+j=1

( :{Zij}; M ={M} moments M, = icbm(km)n

m=1

Local dynamics, any timet; the length scale(s) A isinvariable

Multiple harmonics presentation

3D flows with general type of symmetry and 2D flows

Desired accuracy, x=0,y=0,z= 7,(t), N=i+j=12,..0



REGULAR ASYMPTOTIC SOLUTIONS

%Dij (M.M,)x%y* =0 %Kij @m0 )x¥y? =0

i+j=1 i+j=1
regular asymptotic solutions t/t>>1
Richtmyer-Meshkov bubble: v(t) ~ A/t ()~ /A

L ayzer-type expansion: regular asymptotic solutions are absent

in general case

* non-linearity is non-local

» singularities determine the interplay of harmonics

At afixed length scale(s) A, shape of the regular bubbleisfree
and is parameterised by the principal curvature(s)
number of the parameters N, symmetry of the 3D (2D) flow

N, <3

2D pm11, 3D p4mm, pemm N, = 1 3D p2mm N, = 2

v’ to capture the interplay of harmonics

v" to show existence and convergence for solutions in the family

v’ toinvolve al bubbles allowed by symmetry of the flow

v" to choose the physically dominant (i.e. the fastest stable) solution



RICHTMYER-MESHKOV bubbles

CurvatureradiusR  (radii Ry y) KR, <kR<

velocity v=L(k,R)/t  surfacevariables {,, =, (k,R)
Fourier amplitudes ®, = ¢, (k, R)/t
/Py~ exp(~ pn)
Asymptotic stability v —L(k,R)/t ~tP% Z,(t)-Z,(k,R)~tP
B =B(kR) for stable solutions RefB] <0

Properties
1. The physically dominant solution in the family corresponds to a
bubble with aflattened surface, KR — o

2. The bubble flattensin time as kR ~ (t/r)Boo

3. For highly symmetric 3D flows: kRgp ~ (t/T)B°°, Vap ~ 4/kt

A

The local dynamics of 3D highly symmetric flows is universal;
near-circular contour Z ~ 4 1(x2 + yZ)

3D anisotropic bubbles tend to conserve a near-circular contour
3D anisotropic bubbles are unstable

3D Layzer-type “square” solution isthe point of bifurcation

The dimensional crossover is discontinuous, 33p_op >0

© ®©® N o U

NO 2D flows



Family of regular asymptotic solutionsin RM|

EI.Il D.IZ D.IS D.I"r 1/(kR)

Velocity V as the function on the radius of curvature R
Three-dimensional flows with hexagonal (3Dy,) and square (3D,)
symmetry and two-dimensional flow (2D); K is the wave-vector, t
istime, N is order of approximation.

Black circles mark the Layzer-type solutions with
R =4/k,v, =1kt in3D and R, =3/k, v| =2/3kt in2D.



Family of regular asymptotic solutionsin RM|

P/ Pl | U(kR)

0.1 0.z 0.3 0.4

-0+

Exponential decay of the Fourier-amplitudes
with an increase in their number.
Three-dimensional flows with hexagona symmetry p6mm (3Dy);
P, =D (kR =); black circle corresponds to the Layzer-type

bubble.



Family of regular asymptotic solutionsin RM|

Relp] N=1,2 3D,

0.05 0.1 0.15 0.2 0.25 0.3

Stability analysis for the family of regular asymptotic solutions

Real parts of exponents 3 as functions on the radius of curvature R

Dashed lines correspond to N=1, solid lines—to N=2, black circle

corresponds to the Layzer-type solution.



Evolution of the bubble front in RM|
Highly symmetric 3D and 2D coherent structures

timescale T ~1/vgk
t<<T: curvature {;(t) ~ —kt/T, velocity v(t)— vy ~Vyt/T

t~1: curvature {4(t)~ -k

t >>1: curvature ¢4 (t) ~ —k (t/1) P>, velocity v(t) ~ C,, /kt

Dynamic trajectories

A v/v

0'
<
N
“«

>
Ca/k

Solid line corresponds to multiple harmonic solution, and black
square - to the flattened bubble. Dashed line corresponds to
L ayzer-type single-mode solution, and black circle —to the Layzer-

type bubble.



Evolution of the bubble front in RMI
RM bubblesflatten RM bubbles decelerate

» Qualitative agreement with experiments

 Bubblevelocity Vv, ~C, /kt v, ~C_/kt
C,/C.~3-4  Ah~Cln(t/1)

« Bubbleshape Z,(t)~ -k (t/T)_B°° reliable parameter

» Existence of an exact analytical solution

« arigidbody curvature ~1/R drag force = pv2R?

For atwo-fluid system, Atwood number <1

» the Layzer-type approach requires MASS FLUX through the
interface

» Flattened RM bubble is a multiple-harmonic solution with NO
MASS FLUX through the interface



Family of regular asymptotic solutionsin RM|

0.1 0.2 0.3

0. 41/(ka)() 0.5

Dependence of velocity vV = L(RX,y , kx,y)/ t on the bubble shape

L ow-symmetric bubbles with rectangular symmetry 3D,, two-

parameter family; various values of the aspect ratio; the highest
curve 3Dg is the family of solutions for 3D square bubbles with

R, = R, and Kk, /k,, =1; the lowest curve 2D is the family of

solutions for 2D bubblesflat in the y-direction with Ry = 00



Family of regular asymptotic solutionsin RM|

0.1 0.z 0.3 0.4 0.5 0.6 0.7,

Bifurcation of the Layzer-type square solution (black point) for

nearly symmetric flowswith k, ~k, and R, ~ R,



Family of regular asymptotic solutionsin RM|

RelB] | | L/kxRx |

Stability analysis for low-symmetric RM bubbles
Dashing lines corresponds to highly symmetric 3D square
solutionswith k, =k, and R, = R, . Solid lines correspond to

nearly symmetric solutionswith kK, ~k, and R, ~ R, . Non-

symmetric solutions are unstable.



Evolution of the bubble front in RMI
L ow-symmetric 3D coherent structures
The dimensional 3D-2D crossover

2D bubbles under 3D modulations

time scale T ~ /vy K,
t<<t Qg ft)~ =k, t/1 Loy ~ K, t/T

t>>T g, (t) ~ -k, (t/T) P> Lyy ~ Ky (t/7)Pao-20

the dimensional crossover is discontinuous, 33p_op >0

Secondary instabilities
» Secondary instabilitiesin RMI are “slow” in contrast to RTI

SINGULAR ASYMPTOTIC SOLUTIONS
Richtmyer-Meshkov spikes small-scale structure dynamics

Singular asymptotic solutions to dynamical system
Zhang™®, Abarzhi®®

t>>1: shape Z (t)~ $ C, (exp(t/r)rz)n  velocity v(t)~ —v,
n=1

« Tanveer 1993, Baker and Meiron 1989, Pullin®®"...
« For atwo-fluid system, Atwood number < 1, the singular

asymptotic solutions requires mass flux through the interface



Conclusion
v' Large-scale coherent motion in RMI
v' Separation of scales activeregions passiveregions
v Group symmetry large-scale coherent motion
v" Local dynamics of regular bubbles and singular spikes
v" Consideration of 3D flows with general type of symmetry
v" Singularity —interplay of harmonics — shape of the bubble
v Family of regular asymptotic solutions — symmetry of the flow
v" The physically dominant solution in the family
v" Multiple harmonic solution
v" Universality of local dynamicsfor 3D highly symmetric flows
v" Conservation of anear-circular contour of 3D bubbles
v" Discontinuous 3D-2D dimensional crossover
v' Singular asymptotes
v Comparison between the local dynamicsin RTI and RMI
v" Different types of the bubble front evolution in RTI and RMI
v' Layzer-type bubblesin RTI and RMI
v New type of the evolution of the bubble front in RMI
v Integral (velocity) and internal (shape) diagnostic parameters
v" Theory works effectively for atwo-fluid system

Discussion

?7? turbulent mixing in RMI and RTI



