Ablative Rayleigh-Taylor Instability at Short Wavelengths

Moire Interferometry

Penumbral Imaging

Fresnel Phase Zone Plate

Institute of Laser Engineering **Osaka University** IWPCTM 2001 Paper# E-45 9-14 Dec 2001, Pasadena, USA

Primary obstacle of IFE is Rayleigh-Taylor instability.

Ablative Rayleigh-Taylor instabilities

Motivation

New method is needed for the measurement of short wavelength Rayleigh-Taylor (RT) Growth.

It is necessary to measure short wavelength RT growth in order to understand the mechanism of the ablative stabilization.

Dispersion curve of the Rayleigh-Taylor instability

- Short wavelength RT
 Moire interferometry
- Independent test
 Penumbral imaging
 Fresnel phase zone plate

Moire interferometry / short wavelength Rayleigh-Taylor

Experimental procedure

Schematic view of the experimental setup

Moiré interferometry

Moiré interferometry is very useful for measurements of the RT instability at short wavelength.

$$k_{\text{Moire}} = |k|_{\text{Perturb.}} \pm k_{\text{Grid}}|$$

Due to the moiré interference, the short wavelength perturbation is converted to longer wavelength perturbation.

M. Matsuoka et al., Rev. Sci. Instrum., 70, 637 (1999)

Experimental results

Raw data of Rayleigh-Taylor instability observed with moiré interferometry

Short Wavelength RT

Large Rayleigh-Taylor growth was observed up to 5- μ m wavelength.

ILE Osaka

- This exp't suggests that nonlocal heat transport plays a role in ablative stabilization.
- However, for unambiguous clarification, we need to make independent observation.

Reduction of the target density with nonlocal heat transport

ILE Osaka

Method of Density Measurement

Density profile was obtained from the x-ray backlighting image of the planar target.

Fresnel phase zone plate / density profile

The principle of the FPZP imaging

Spatial resolution test of FZP

Ablation density profile

Penumbral Imaging / density profile

Proof of Principle experiment

The proper density profile of the laser-undriven polystyrene target was obtained with penumbral imaging coupled with a side-on x-ray backlighting.

Density measurement with penumbral imaging

The density profiles in target plasmas driven by the HIPER laser were observed from shock transit to target acceleration.

Density measurement with penumbral imaging

Kinetic effects on electron energy transport are not negligible even in the case of relatively low intensity blue laser irradiation ($l_1 = 0.7 \times 10^{14} \text{ W/cm}^2$, $\lambda_1 = 0.35 \,\mu\text{m}$).

Motion blurring were cleared away by a deconvolution process with measured temporal history of backlight x-rays and velocity of targets.

summary

With advanced diagnostic techniques, we are approaching to better understanding of the Raylei-Taylor instability.

- Rayleigh-Taylor (RT) is the critical physics for high-gain IFE
- Energy transport can modify the RT growth at short wavelengths.
- Moire interferometry first observed the short wavelength RT growth.
- The observed RT growth suggests that nonlocal transport plays a role in ablative stabilization. But there is some ambiguity due to saturation.
- For independent test of the transport effect, we are measuring the ablation density with high-resolution imaging techniques.
- Initial test result is supportive to the nonlocal transport.

Our strategy is to measure all necessary quantities (γ , k, g, m, ρ_a , L) to test various RT theories.