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Primary obstacle of IFE is Rayleigh-Taylor instability. @
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* Heavy Fluids Light Fluids

Typical wavelength = several tens pm
time scale = ns

High resolution advanced diagnostics are required.

X-ray Moire interferometry
Fresnel phase zone plate
Penumbral imaging



Ablative Ra yleigh-Taylor instabilities

Eagle nebula

Type la supernovae

Laser exp't

Astrophysics of exploding obj
Lecture notes by
Serguei Blinnikov

Perturbation amplitude a-= aoeyt

L \1+kL_Bk a

v =fluid velocity across the unstable surface

B = depends on the ablation structure.




Motivation

New method is needed for the measurement of short
wavelength Rayleigh-Taylor (RT) Growth.

Dispersion curve of the Rayleigh-Taylor instability

Growth rate (1/ns)

It is necessary to measure short wavelength RT growth in order
to understand the mechanism of the ablative stabilization.

Nonlocal

10
Wavelength (um)

e Short wavelength RT
Moire interferometry

* Independent test
Penumbral imaging
Fresnel phase zone plate
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Moire interferometr y / short w avelength Rayleigh-Taylor



Experimental procedure

Schematic view of the experimental setup
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Moiré interferometry o _
Moiré interferometry is very useful for @

measurements of the RT instability at short wavelength.
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Perturbation wavelength _
Kntoire = |K perturb. £ Karidl
APerturb.= 12 pm
_ X Due to the moiré interference, the short wavelength
Grid mask ) .
perturbation is converted to longer wavelength
perturbation.
Agrig =10 pm

M. Matsuoka et al., Rev. Sci. Instrum., 70, 637 (1999)
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Experimental results Raw data of Rayleigh-Taylor instability @
observed with moiré interferometry

ILE Osaka
A=12um A= 8.5um A=4.7um

a,= 0.1pm  oym a,= 0.1pm  goym a, = 0.05um  goym
<> <> <>
1 —
1 — 1—
W o v
c c (7]
T [ — :
Q O —
E £ 2
ol ol .
[
2__
2_—
2__
v
v v
35007“\““\‘“‘\““\““\““\““\“7 ]]04““““““““““““ 50 ———————————
3000 i
r 8000 | 4000
2500 - [
2000 | 6000 |- 3000
3 : 5 5
> 1500 . d [
S, F 5, 4000 |- 55, 2000
:'? 1000 |- ‘-? ‘? [
z - -
r 2000 | 1000
8 s00f i ] 3 i
£ £ £
0 — 0 I o ¥
100 200 300 400 500 600 700 100 200 300 400 500 600 700 200 300 400 500 600 700
Position [um] Position [um] Position [um]

AM = A1tA2 sensitive to  AA

A —Ao



Short Wavelength RT

Large Rayleigh-Taylor growth was observed up to 5-pm

wavelength. @
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» This exp’t suggests that nonlocal heat transport plays a role in ablative
stabilization.

« However, for unambiguous clarification, we need to make independent
observation.



Reduction of the target density @
with nonlocal heat transport
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Density profile at 1.3 ns

2.5 = | | ] Spitzer-Harm (SH)
i - ] Local heat transport :

= Diffusion approximation of
electron thermal conduction

Fokker-Planck (FP)
Nonlocal heat transport :

1.5

Density p (g/cm?3)

= High-energy electrons in the tail of
Maxwellian distribution penetrate

0.5 |- into the target and preheat it.
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Method of Density Measurement

Density profile was obtained f rom the x-ray backlighting

Image of the planar target. @
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T : Trans mission , 4 : mass absorption coeftf.
= exp(~4g))
@ = p | material thickness, p: density




Fresnel phase zone plate / density profile



The principle of the FPZP imaging

FPZP When x rays transmit through the
_ material zones of the FPZP, the phase
n‘ré'- of x ray increase by .

From source
/ o Diffraction
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Point source

Screen

FPZP

—— Advantage Disadvantage
-High spatial resolution 2.2 um -Chromatic aberration Possible to obtain ~um
spatial resolution

-Hard x-ray imaging 4.7 keV -Background




Spatial resolution test of FZP
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CCD camera MTF is removed by
Calculation.

The wavelength at which the MTF
becomes 5 % is 2.2 pm.



Ablation density profile

Density
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Penumbral Ima ging / density profile



Proof of Principle experiment

The proper density profile of the laser-undriven polystyrene target was

obtained with penumbral imaging coupled with a side-on x-ray backlighting. @
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Density measurement with penumbral imaging

@

laser were observed from shock transit to target acceleration. (ﬁ'EFLgiOKE)
. USaka
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The density profiles in target plasmas driven by the HIPER
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(Density)
Spatial resolution 8-5 pm
Temporal resolution 140 - 160 ps

The origin of the time is set to be

the time when the shock breaks
out at a target rear surface.
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Density measurement with penumbral imaging

Kinetic effects on electron energy transport are not

negligible even in the case of relatively low intensity blue
laser irradiation ( /[, = 0.7 x 10** W/cm?2, A, = 0.35 pm).
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(ILE. Osaka)

+ 0.6 ns (corresponding to the beginning of a target acceleration)

p,=2.1%2 ;,g/cm3 (Experiment)
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| P,=2.59/cm? (Diffusive)
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Motion blurring were cleared away by a deconvolution process with

measured temporal history of backlight x-rays and velocity of targets.



summary
With ad vanced diagnostic techniques, we are approaching
to better understanding of the Raylei-Taylor instability.

* Rayleigh-Taylor (RT) is the critical physics for high-gain IFE
 Energy transport can modify the RT growth at short wavelengths.
* Moire interferometry first observed the short wavelength RT growth.

» The observed RT growth suggests that nonlocal transport plays a role in
ablative stabilization. But there is some ambiguity due to saturation.

 For independent test of the transport effect, we are measuring
the ablation density with high-resolution imaging techniques.

e Initial test result is supportive to the nonlocal transport.

Our strategy is to measure all necessary quantities (Y, k, g, m, py, L)
to test various RT theories.



