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Summary @I
T

- The transition to turbulence in a high Reynolds number, Rayleigh-
Taylor unstable plasma flow is studied.

- 1D numerical simulations (HYADES) are used to determine the plasma
flow parameters (P,p,T, Z) from which the kinematic viscosity is then

determined.

- The Reynolds number is determined using the experimentally measured
perturbation amplitude and growth rate together with the plasma
kinematic viscosity determined from the 1D numerical simulations.

- It is observed that the Reynolds number is sufficiently greater than the
mixing transition threshold of Dimotakis (i.e. Re>>2 x 10%) for much of
the experiment, yet the flow has not transitioned to turbulence.

- An extension of the Dimotakis mixing transition to non-stationary flows
of short time-duration is presented.
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* Results from 1D HYADES simulation of the experiment

Basic plasma flow parameters (P,p,T, Z)
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The experiments are conducted on the Omega laser in a
very small Beryllium shock tube El
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Multiple beams of the Omega laser are used to both drive the
strong shock and diagnose the interaction
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The evolution of a 2D single-mode perturbation (A=50um,
a,=2.5um) is observed with x-ray radiography

t=8ns t=12ns t=14 ns

ap.y =83 um ap.y =121 pm ap.y =157 pym

Radiographic images obtained with 4.7keV Ti He-a x-rays imaged onto
a gated x-ray framing camera



Results from 1D numerical simulation of the experiment @|
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The effect of decompression of the interface has been taken into
account
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Time dependent values of the basic flow parameters
(pressure, density, temperature, and degree of ionization)
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Time dependent values of related flow quantities -
(Atwood number, adiabatic index, and Mach number) @
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Time dependent values of the plasma coupling parameter, I'
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The plasma coupling parameter is in the “uncomfortable” range,
i.e neither weakly coupled (I'<<1) where kinetic theory applies
nor strongly coupled (I'>>1) where molecular dynamics simulations

can provide rigorous transport properties



Time dependent values of the kinematic viscosity, v
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S .I. Braginskii, in Reviews of
Plasma Physics, New York,
Consultants Bureau (1965).

J.G. Clerouin, M .H. Cherfi,
and G. Zerah, EuroPhys. Lett.
42,37 (1998).

- The kinematic viscosity is relatively constant throughout the experiment

 The value differs by more than a factor of 2 across the interface

- The Braginskii and Clerouin models show significant differences

@l



Time dependent values of the Reynolds number

Beynolds Humber

1.x10°

Different values due to
differences in kinematic
viscosity on either side
of the interface

100000,

ke 10000

— plastic
---- foam

1000

2.3 2 7.3 1o 123 15 1.3 20
tin=)

The Reynolds nhumber exceeds the mixing transition threshold of
Dimotakis* (Re_,;; = 2 x 10%) on both sides of the interface fort > 5ns.

*P.E. Dimotakis, JFM 409, 69 (2000)



The binary mass diffusivity at the interface and the Schmidt

]:I:I.I

number have been calculated as well @
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Binary mass diffusivity calculation follow the method outlined in :

C. Paquette et al., Astrophys. J. Suppl. Ser. 61, 177 (1986).



From the kinematic viscosity v and mass diffusivity D, the -
Rayleigh-Taylor growth rate dispersion curve can be calculated @
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The Rayleigh-Taylor dispersion curve is : W.p= wk.t) +Vv v+
b

where ¥ (k,t) is the growth rate reduction factor due to a finite density gradient
and is found as the solution of the following eigenvalue equation :
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dz(p dz)_Wk (p Ak dz)

From Duff, Harlow, and Hirt, “Effects of diffusion on interface instability between gases”, Phys. Fluids 5(4), 417 (1962).



A sufficient range of Rayleigh-Taylor unstable scales exists

to populate a turbulent spectrum
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* The initially imposed perturbation has wavelength A = 50 yum, or k = 0.126 rad / ym.

- At t = 20 ns, perturbations with k > 8 rad/um (A < 1.3 yum) are completely stablized.

- Att =20 ns, the peak growth rate occurs at k = 2.5 rad/ym (A = 2.5 pym)

- A sufficient range of scales exists, subject to RT instability which can populate a

turbulent spectrum
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Dimotakis has identified a critical Reynolds number at which a
rather abrupt transition to a well mixed state occurs
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(Colhins o al. 1978, table 4)

This mixing transition at Re = 2 x 10* is observed to
occur in a very wide range of stationary flows

All figures from P.E. Dimotakis, JFM 409, 69 (2000)



This transition is co-incident with the appearance of a range of
scales decoupled from both large-scale and viscous effects
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Figure 19. Reynolds number dependence of spatial scales for a turbulent jet

Figure 19 from P.E. Dimotakis, JFFM 409, 69 (2000)



In high Re flows of short time duration, the Taylor microscale -
may not have sufficient time to reach its asymptotic value @

The Taylor microscale (for stationary, homogeneous, isotropic flows)
depends on the integral scale 6 and the Reynolds number as :

-1/2

Ar~OReg
This dependence is analogous to the development of a laminar viscous
boundary layer on a flat plate : U
—>
-1/2 A,
A,~xRe, NN A A AN O O O

For an impulsively accelerated plate, however, the boundary layer
development will initially grow as :

A (D) ~Vi

We propose a modification to the mixing transition as the time at which
the smaller of the Taylor microscale and the viscous diffusion scale
exceeds the dissipation scale (50 x Kolmogorov scale) :

Min(\vt,A.)>501,



Time dependent values of the Taylor microscale, —

Kolmogorov scale, and viscous diffusion scale @'
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A comparison of viscous length scales shows the appearance
of a decoupled range of scales fort> 17 ns
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* The red dot indicates the Dimotakis criterion for transition in a
stationary flow. This occurs att =~ 5.5 nsor Re = 2 x 10%.

- The green dot indicates the present criterion for transition in a
temporally-limited flow. This occurs att =17 ns or Re = 10°.



This method has been applied to estimate the turbulent -
transition time in the LANL gas curtain experiment * @
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* From Rightly, Vorobieff, Martin, & Benjamin, Phys. Fluids 11(1), 186 (1999)



Current and future work on Omega will focus on the role of
modal content and dimensionality of the initial perturbation
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Conclusions &
€

The transition to turbulence in a high Reynolds number, Rayleigh-
Taylor unstable plasma flow has been studied experimentally.

The following observations are made :

- The Reynolds number exceeds the mixing transition threshold
of Dimotakis (i.e. Re>>2 x 10?%) for much of the experiment, yet
no transition to turbulence is observed.

- An extension of the Dimotakis mixing transition to non-stationary
flows of short time-duration is presented. This method illustrates
that the temporal duration of the present flow is insufficient to
allow for the appearance of a mixing transition.



