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Summary

- Experiments have been conducted on the Omega Laser to
study the interaction of a strong shock (M>10) with a spatially
localized density inhomogeneity (Cu sphere)

- The interaction is diagnosed with x-ray radiography
simultaneously from two orthogonal directions

- The evolution of the shocked sphere is observed to proceed
as an initial roll-up into a double vortex ring structure followed
by the appearance of an azimuthal instability which ultimately
results in the three-dimensional breakup of the sphere.

- Numerical simulations are performed in both two and three-
dimensions, and results are in good agreement with
experiment.
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These experiments recreate in a controlled setting the
interaction of a strong shock with a dense molecular cloud

From Fesen el al., Ap.J. 262, 171 (1982):

“The Cygnus Loop is the classic example of
a moderately old supernova remnant (SNR).
its structure and physical properties are the
result of a supernova-generated shock wave
interacting with the surrounding interstellar
medium.”

“Comparisons with published shock models
indicate significant differences between the
models and observations ...”




The interaction of a shock with a dense spherical inhomogeneity
has previously been studied only at low mach number
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Once formed, a vortex ring is subject to a 3D azimuthal .
bending mode instability f@
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The Omega experiments are conducted in a very small
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Multiple beams of the Omega laser are used to both drive the
strong shock and diagnose the interaction
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Simultaneous side-on and face-on images of shock / sphere
interaction with 120 ym diameter Cu sphere
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Simultaneous side-on and face-on images of shock / sphere
interaction with 240 ym diameter Cu sphere
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Large-scale features appear repeatable from shot-to-shot,
but small-scale details differ
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The two orthogonal diagnostic views help to reveal the
3D morphology of this flow
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Analysis of Omega shock / sphere data quantifies .
the three-dimensional instability and breakup of the sphere f@
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Mode number spectra from face-on images of shock / sphere
interaction reveal a dominant azimuthal mode
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The observed azimuthal mode number agrees well
with the prediction from Widnall’s theory
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SNR should be greatly improved using a backlit pinhole
due to greatly decreased pinhole-to-target distance
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filter # photons / resolution element ~ u 2, and SNR = V # photons
Backlit pinhole increases SNR by factor of 11



We have begun investigating the ability to seed the azimuthal
instability with machined initial perturbations E|
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2D simulations of the experiment performed with CALE
predict the basic evolution of the sphere into a vortex ring
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Simulations by J. O. Kane



3D simulations of the experiment have been performed
with an AMR code
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and the AMR face-on images are in good agreement E|
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Conclusion ”

- Experiments have been conducted on the Omega laser to explore
the interaction of a strong shock with a dense sphere

- The experiment has been diagnosed simultaneously from two
orthogonal directions

- The experimentally observed azimuthal mode number is in good
agreement with both incompressible theory of Widnall and 3D
numerical simulations.

- Future work will focus on shock interaction with less-dense objects
and interactions with multiple objects



