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Richtmyer-Meshkov (R—M) instability occurs when two different density fluids are impulsively
accelerated in the direction normal to their nearly planar interface. The instability causes
small perturbations on the interface to grow and possibly become turbulent given the proper
initial conditions. R—M instability is similar to the Rayleigh-Taylor (R—T) instability, which is
generated when the two fluids undergo a constant acceleration. R—M instability is a fundamental
fluid instability that is important to fields ranging from astrophysics to high-speed combustion.
For example, R—M instability is currently the limiting factor in achieving a net positive yield
with inertial confinement fusion.

The experiments described here utilize a novel technique that circumvents many of the
experimental difficulties previously limiting the study of the R—M instability. A Plexiglas tank
contains two unequal density liquids and is gently oscillated horizontally to produce a controlled
initial fluid interface shape. The tank is mounted to a sled on a high-speed, low-friction linear
rail system, constraining the main motion to the vertical direction. The sled is released from
an initial height and falls vertically until bouncing off of a movable spring, imparting an impulsive
acceleration in the upward direction. As the sled travels up and down the rails, the spring
retracts out of the way, allowing the instability to evolve in freefall until the sled impacts a
shock absorber at the end of the rails. The impulsive acceleration provided to the system is
measured by a piezoelectric accelerometer mounted on the tank, and a capacitive
accelerometer measures the low-level drag of the bearings. Planar Laser-Induced
Fluorescence is used for flow visualization, with an Argon ion laser illuminating the flow and a
CCD camera mounted to the sled capturing images of the interface.

This experimental study investigates the instability of an interface between incompressible,
miscible liquids with an initial sinusoidal perturbation. The lighter fluid is an isopropyl alcohol
and water solution, and the heavier fluid is a calcium nitrate salt solution. The resulting Atwood
number A (density difference over density sum) is 0.155. The amplitude of the disturbance
during the experiment is measured and compared to theories. The results are
nondimensionalized using the wave number 4 and initial growth rate &,. The initial growth
rate and time for zero amplitude are obtained from an integration routine utilizing linear theory
along with measured initial conditions and accelerations. The amplitude measurements are
compared to several theories in the linear, weakly nonlinear, and late-time nonlinear regimes.
The effect of Reynolds number on the vortices' evolution is also investigated. At higher Reynolds
Number (based on circulation), an instability of the vortex cores has been observed. While
time limitations of the apparatus prevent determination of a critical Reynolds Number, the
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lowest Reynolds Number this vortex instability has been observed at is 2000.
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The nondimensional amplitude versus time is shown
for the early stages of the instability. Linear theory

assuming |44 << 1 and is surprisingly accurate at
moderate values of Aa. Also, the Aa, (dimensionless
amplitude before impact) for these experiments
ranged from 0.07 to 0.66 and does not seem to effect
the agreement with linear theory.

° 1/2 wave i
080 — ;12 waves DDD%D&gié?%I] (Richtmyer, Cormnmun. Pure Appl. Math 13, 1960) is
2 Linear Theory Do%,%iﬁ%m shown by the solid line. The experiments show
060 L { DS%E o ] excellent agreement with linear theory up to 44,7 =
" I D%@% o 0.3 and are within 10% of linear theory at 44,/ =0.7,
i © where nonlinear effects start to become important.
40 b 7 It should be noted that linear theory is derived

Intermediate-time amplitude measurements are
shown along with two theories developed by Zhang
and Sohn (Phys. Fluids 9, 247, 1997) that are a
function of Atwood number. The first is a weakly
nonlinear fourth order perturbation theory, shown for
a representative 4 of 0.155. This solution agrees
with experimental data to within 10% up to 44,7 =
1.3, but then rapidly becomes invalid due to its cubic
form. Recognizing the limited range of validity, Zhang
and Sohn used this solution to develop a Padé
approximate for velocity which was then integrated
to determine amplitude. This extended the range of
agreement (to within 10%) up to A&,/ = 3.

Late-time amplitude measurements are shown along
with nonlinear theories. Jacobs and Sheeley (~Ays.
Fluids 8, 405, 1996) modeled the late-time flow as a
row of point vortices in fluids with A= 0, where A&/,
is the time when the vorticity has coalesced into a
point. Sadot et al. (Phys. Rev. Lett. 80, 1998) used
several models' results to develop a rational equation
for growth that captures the early stages to second
order (with 4 dependence) and converges to the
correct asymptotic velocity. The parameter Cis a
function of the asymptotic velocity, with the functional
form of A dependence developed in Niederhaus
(Ph.D. dissertation, University of Arizona, 2000).
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One parameter that has not received previous study
is the influence of Reynolds number on the flow. The
Reynolds number for this vortex dominated flow is
defined using the circulation of the vortices and the
average kinematic viscosity of the fluids, i.e. T'/v.
While the overall amplitude was not found to be a
function of the Reynolds number, the dynamics of
the vortex core was influenced by the flow Reynolds
number. Measurements were made of when the
interface first became multi-valued, and when the
vortex had completed a given number of turns. The
image to the left shows a vortex that has just made
2 complete turns.

This graph shows the evolution of the vortex core as
a function of the experimental Reynolds number. At
early-times when the vorticity is still distributed along
the interface, the flow is not a function of Reynolds
number and the interface first becomes multi-valued
at 44,/ =1.5 for all Reynolds numbers investigated.
After the vorticity has concentrated, the lower
Reynolds number experiments have a slower turning
rate due to viscous diffusion of vorticity from the
cores. However, because perturbation amplitudes
were not found to be a function of Reynolds number,
the size of the vortex core is still small compared to
the perturbation amplitude.

Shown on the graph to the left is the nondimensional
time when the disturbance amplitude equals the
spiral thickness (see images to right) for those
experiments exhibiting the secondary instability.
Higher Reynolds number experiments become
unstable sooner, with the lower Reynolds number
experiment taking more than twice as long to exhibit
the instability. The instability appears to be correlated
to the number of turns in the vortex core, occurring
roughly after three turns over the Reynolds number
range investigated. Due to experimental time
limitations, a critical Reynolds number for the
secondary instability cannot be determined.

The above sequence of PLIF images shows the evolution of the Richtmyer-Meshkov instability
generated from a sinusoidal initial perturbation with 42 = 0.16 and 2 1/2 waves inside the
experiment tank. Image (a) was taken just before the sled impacted the spring and thus
shows the initial interface shape. The impulsive acceleration in these experiments is directed
from the heavier fluid into the lighter fluid, causing the initial perturbation to invert before
growing. Immediately after inversion, the interface retains a sinusoidal shape, but with time
the vorticity begins to concentrate at points midway between the crests and troughs. These
vortices roll the interface around their centers, forming a spiral pattern. Note that, characteristic
of the instability with small density differences, the interface retains its top-to-bottom symmetry
well into the nonlinear regime.

Shown above is a sequence of images from an experiment with 4z, = 0.29 and 1 1/2 waves
inside the tank. The Reynolds number (based on circulation) of the experiment is 4830.
Initially the instability develops very similarly to the lower Reynolds number cases. Starting at
frame (h), however, one can see the start of a secondary instability in the core of the vortex.
The secondary instability takes the form of oscillations superimposed on the vortex spiral.
The waves start near the center of the core and grow in size and extent until all layers of the
core spiral are effected. By frame (k) the instability has spread throughout the vortex core
and it appears that the interface is no longer sharp and the fluids are starting to mix on a
smaller scale.



