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Outline

� Introduction
— Solid-state experiments at high pressure on a laser

� High pressure strength
— RT instability in solid Al at high pressure to infer Y(P)

� Dynamic material response
— Dynamic x-ray diffraction of the lattice level response in Si and Cu

� Wave profile and residual deformation
— VISAR measurement, sample recovery and characterization
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The high pressure response of materials is of
interest for many reasons; lasers provide a way to
access high pressures and strain rates

� The core of the earth is Fe at 3 Mbar, both solid and liquid
— Long time scale, diamond anvil experiments

� Survivability of passengers in a car crash depend on the material
response of the car
— ms-µs time scale, Hopkinson bar and gun experiments

� Space station wall integrity from space debris, dust, micro-asteroids
— µs time scale, gun and high explosives experiments
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Example - strength measurements at high pressure
using a high explosive drive and modulated Al plate

� Shockless HE drive used to compress and accelerate a plate with pre-
imposed modulations

� Pre-imposed modulations grow by the Rayleigh-Taylor instability

� The growth is reduced from classical (fluid) due to material strength
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1.  Solid state RT instability experiment

� An internally shielded hohlraum is used to shock compress an Al-6061
metal foil at high pressure

� Internal shields block hard x-rays from preheating package

� A shaped laser pulse generates a series of gentle shocks for nearly
isentropic compression
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Detailed simulations predict that the Al foil remains
solid throughout the experiment

� The Al remains below the melt curve

� The foil trajectory is nearly isentropic to 1.8 Mbar
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Simulations of the instability growth demonstrate
sensitivity to the strength of the Al

� Growth rates with strength are expected to be reduced from classical (fluid)

Steinberg-Guinan constitutive model
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The RT growth is nearly fluid at early times, but it is
suppressed at later times

� Experiments were conducted with 10, 20 and 50 µm wavelengths

� Modeling was done assuming the following:
— Fluid
— Nominal Steinberg-Guinan
— Fluid until 13 ns, then S-G with theoretical maximum Y=G/10
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The RT growth is nearly fluid at early times, but it is
suppressed at later times; suggestive of model from
Grady/Asay and data by Rayevsky and Lebedev

� High pressure strain causes localized heating and softening in shear
bands; bulk Al flows as fluid due to localized deformation

� As heat conducts into the bulk material, the metal regains bulk solid
strength and continued growth is inhibited
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The late time images show features that may be due
to hydrodynamic imprinting of the grain structure

� The spatial scale of the late-time modulation is similar to initial grain
structure

� 2D simulations incorporating the grain boundaries start to show effects
at t=18 ns, 3D simulation has been started

Grain
structure

Fluid
Cu foil

Inclusions 

2D simulation including
grain structure

t = 18 ns Grain
boundaries

Simulations by G. Bazan, 2001

Ygrain = YSG       Yboundary = 0

Al: t=21.5 ns
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2.  Dynamic x-ray diffraction

� In situ x-ray diffraction probes the long range lattice order under shock
compression

� Shock pressure generated using a hohlraum x-ray drive or by direct
laser irradiation

� Time-resolution with x-ray streak cameras provides information on
dynamic lattice response

Q. Johnson et al, 1970;
J. S. Wark et al, 1989.

Compressed lattice

Shocked Bragg

Unshocked Bragg

X-ray source

Pressure source

Shift of diffraction signal

Unshocked Laue

Shocked Laue

Probing orthogonal lattice
planes provides information
on the transition to plasticity
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Simultaneous measurements of orthogonal planes
indicates Si responds uniaxially on a ns time scale

� 40 µm thick Si shocked along (100) axis

� P=115-135 kbar; HEL=84 kbar
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Cu undergoes a transition to 3D lattice compression
at high pressure

� 8 µm single crystal Cu shocked along (100) axis

� P = 180 kbar; HEL ~ 2 kbar
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The timescale for plastic deformation in Si is much
longer than for Cu based on Orowan’s equation

Orowan equation: ∆ε
∆t

= N |b| v
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Silicon

� ∆∆∆∆t >1 µs : dislocations do not
move

—5% strain, dislocations separated by at
least the Burger’s vector (3.8 Å) (diffraction
linewidth indicates N < 1014 m-2)

—Linear extrapolation of dislocation velocity
in Si (0.1 mm/s)

Copper

� ∆∆∆∆t < 10 ps : dislocations do move
—5% strain, dislocations separated by at

least the Berger’s vector (2.5 Å)
—Velocity of dislocations calculated to be

400 m/s in MD simulations
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The time scale for plastic deformation in Si is much longer than
for Cu, due to its high Peierls barrier and activation energy

t t
aB
brun= =

σ

Cu

Si

• For σσσσ < YP: thermal activation regime, and 

• For σσσσ > YP: phonon drag regime, 

Assume that σσσσ = 3 GPa, and kT = 0.05 eV:

For Si:

YP = 0.07G0(1+AP/ηηηη1/3) > 0.07G0 
giving YP > 0.07 (63.7 GPa) = 4.5 GPa,
∆∆∆∆F = 0.2Gb3 = 0.2 (63.7GPa) (3.83 A)3 = 4.5 eV

So σσσσ < YP, and kT << ∆∆∆∆F:  thermal activ. regime

Assume  ννννattempt = ννννDebye/100 = 1011 s-1 , 
So 1/twait = (1011 s-1) exp[-(4.5/.05) (1- 3/4.5)2]

Giving twait > ~150 ns, meaning slow

For Cu:

YP = (6.3 x 10-3)G0(1+AP/ηηηη1/3) = 0.42 GPa
So σσσσ > YP, meaning phonon drag regime

Assume  B = 10-10 MPa.s, and a/b < 103,

So trun < (103) (10-10 MPa.s)/(3 GPa) = 30 ps: fast
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A new wide-angle film detector is used to record
many more lattice planes

� X-rays diffracted from orthogonal lattice planes are recorded with 2 x-
ray streak cameras

� A segmented film assembly records x-rays diffracted over a ππππ-solid
angle from many more lattice planes
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Detailed response of the lattice is better understood
by recording diffraction from other lattice planes

� Large angle detector has been fielded on Si shock experiments

� Shift  of many different lines is observed; details are being studied
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3. VISAR wave profiles and sample recovery

� Al-6061 wave profile measurements show elastic-plastic response with
spall on release

� Fitting the shock breakout wave profile provides best-fit strength
parameters
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VISAR wave profiles provide information on the
strength parameters for the shocked metal

� The wave profile is sensitive to the constitutive model parameters for the
metal foil

� Best-fit wave profile provides model parameters:
— Shear modulus G=320 kbar (276)
— Bulk modulus K=794 kbar (742)
— Yield strength Y=4.27 kbar (2.9)
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Transmission electron and optical microscope
analysis shows residual structure that depends
on the drive conditions

� Shocked samples are recovered in a low density foam-filled tube

� Preliminary tests done at OMEGA; shock pressure is ~400 kbar, decays
to ~25 kbar at the rear surface
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TEM analysis of recovered Cu shows the residual
microstructure

� Residual microstructure of recovered single crystal Cu samples

� Higher pressures show twinning
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Summary

� Solid state hydrodynamic instability
— RT instability in Al to infer Y(P)
— There is possible imprinting due to the initial grain structure

� In situ dynamic x-ray diffraction
— Time-resolved diffraction relates the lattice behavior to the

macroscopic response of Si and Cu under shock loading
— Si responds uniaxially, Cu deforms plastically

� Shock/recovery experiments
— Residual deformation structure in Cu depends on the shock

pressure


