Design of Flyer-Plate-Driven, Compressible-Turbulent-Mix Experiments

R. P. Drake

University of Michigan

IWPCTM, Pasadena, December 2001

Supernova
Simulation

Omega Laser Experiment

Z Flyer
Experiment

Z has opened up new experimental possibilities

Shown above are pictures of the Z-pinch: (left) prior to firing (right) during firing

By imploding hundreds of wires,
Z can make MJ of X-rays

When the wires collide they produce up to
2 Mega-Joules of x-rays

What matters here: Z can use J X B forces to launch Al flyer plates at > 20 km/s

Photo: www.spacedaily.com/news/milspace-tech-01a.html

Acknowledgements: useful discussions with

M. D. Knudson, J. R. Asay, C. Deeney

Sandia National Laboratory

S.G. Glendinning, H.A. Robey, J.O. Kane,

Lawrence Livermore National Laboratory

Flyer-plate mix experiments differ from flyer-plate EOS experiments

- EOS experiments
- Need rock-steady shock
- Experiment ends when shock exits material
- Mix experiments
- Experiment begins when interface of interest is shocked
- May not want steady shock
- Even steady shock need not meet EOS constraints

Basic geometry for flyer plate experiments

In the following:
Analytic results use γ-law gas, strong shock equations
Simulations used the HYADES Lagrangian hydrocode with SESAME EOS

Basic relationships
 for strong shocks in this system

In lab frame:
$u_{c s}=\frac{1}{1+\sqrt{\rho_{4} / \rho_{1}}} u_{F}$
$u_{R S}=\left(1-\frac{\gamma-1}{2} \sqrt{\frac{\rho_{4}}{\rho_{1}}}\right) \frac{u_{F}}{1+\sqrt{\rho_{4} / \rho_{1}}}$
$u_{F S}=\frac{\gamma+1}{2} \frac{u_{F}}{1+\sqrt{\rho_{4} / \rho_{1}}}$

In flyer frame:

$$
u_{R S}^{\prime \prime}=\frac{-\sqrt{\rho_{4} / \rho_{1}}}{1+\sqrt{\rho_{4} / \rho_{1}}} \frac{\gamma+1}{2} u_{F}
$$

Sound speeds:

$$
\begin{gathered}
c_{3}=\sqrt{\frac{\gamma(\gamma-1)}{2}} u_{C S}=\sqrt{\frac{\gamma(\gamma-1)}{2}} \frac{u_{F}}{1+\sqrt{\rho_{4} / \rho_{1}}} \\
c_{2}=\sqrt{\frac{\gamma(\gamma-1)}{2}}\left(u_{F}-u_{C S}\right)=\sqrt{\frac{\gamma(\gamma-1)}{2}} \frac{\sqrt{\rho_{4} / \rho_{1}}}{1+\sqrt{\rho_{4} / \rho_{1}}} u_{F}
\end{gathered}
$$

In mix experiments one will often not use an Aluminum impact layer

At lower impact layer density, one can drive steady shocks over larger distances

Time until the shock reaches the rear of the flyer plate

$$
t=\frac{D_{1}}{\left|u_{R S}^{\prime \prime}\right|}
$$

How far the shock goes into the impact layer

$$
D_{4}=u_{F S} t=\frac{u_{F S}}{\left|u_{R S}^{\prime \prime}\right|} D_{1}=\sqrt{\frac{\rho_{1}}{\rho_{4}}} D_{1}
$$

For RT experiments, one creates a blast wave

M
$350 \mu \mathrm{~m}$ thick, $21 \mathrm{~km} / \mathrm{s}$ flyer

Goal: waste none of the deceleration

$$
\begin{gathered}
t_{4}=\frac{D_{4}}{u_{F S}}=\frac{D_{4}}{u_{F}} \frac{2\left(1+\sqrt{\rho_{4} / \rho_{1}}\right)}{\gamma+1} \\
t_{1}=\frac{D_{1}}{\left|u_{R S}^{\prime \prime}\right|}+\frac{\gamma-1}{\gamma+1} \frac{D_{1}}{c_{2}}+\frac{\gamma-1}{\gamma+1} \frac{D_{4}}{c_{3}} \\
\boldsymbol{t}_{4}=\boldsymbol{t}_{\mathbf{1}} \text { so }
\end{gathered}
$$

$$
\frac{D_{4}}{D_{1}}=\sqrt{\frac{\rho_{1}}{\rho_{4}}} \frac{(1+\sqrt{(\gamma-1) / 2 \gamma})}{(1-\sqrt{(\gamma-1) / 2 \gamma})}
$$

The unstable interface moves several mm

This graph shows the interface behavior

- The linear growth exponent is ~30 by $1.5 \mu \mathrm{sec}$

Richtmyer-Meshkov experiments are harder

Goal: maximum steady post-shock motion of interface
Means: make rarefactions in flyer and impact layer meet at contact surface

$$
\begin{gathered}
t_{1}=\frac{D_{1}}{\left|u_{R S}^{\prime \prime}\right|}+\frac{\gamma-1}{\gamma+1} \frac{D_{1}}{c_{2}}=\frac{D_{1}}{u_{F}} \frac{\left(1+\sqrt{\rho_{4} / \rho_{1}}\right)}{\sqrt{\rho_{4} / \rho_{1}}}\left(\frac{2}{\gamma+1}+\sqrt{\frac{2}{\gamma(\gamma-1)}}\right) \\
t_{4}=\frac{D_{4}}{u_{F S}}+\frac{\gamma-1}{\gamma+1} \frac{D_{4}}{c_{3}}=\frac{D_{4}}{u_{F}}\left(1+\sqrt{\rho_{4} / \rho_{1}}\right)\left\{\frac{2}{\gamma+1}+\sqrt{\frac{2}{\gamma(\gamma-1)}}\right\} \\
\boldsymbol{t}_{4}=\boldsymbol{t}_{\mathbf{1}} \text { so } \\
D_{4} / D_{1}=\sqrt{\rho_{1} / \rho_{4}}
\end{gathered}
$$

An example where the rarefactions meet

四

$350 \boldsymbol{\mu m}$ thick, 21 km/s flyer

The unstable interface moves steadily for ~ 1 mm

Conclusions

- This poster has described design approaches for flyerdriven RT and RM experiments on \mathbf{Z}
- The advent of the \mathbf{Z} backlighter makes these timely
- Z should be able to accomplish very interesting compressible turbulent mix experiments
- Join us the February 23-25, 2002 for the
- 4th International Conference on High Energy Density Laboratory Astrophysics
- At the University of Michigan in Ann Arbor

