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Abstract

Turbulent mixing of the fluids in a multi-
component system is of interest in situations
such as inertial confinement fusion (ICF)
and core-collapse supernovael. We report
results of a project to include a model of
turbulent mixing in a multi-component
hydrodynamics and physics model called
KULL, which is used for ICF. Because
KULL is a complex, multi-dimensional
model, we have developed a simplified, one-
dimensional version called sKULL to speed-
up the development of the turbulent mixing
model.

Of primary interest in the development of a
turbulent mixing model for a multi-
component fluid is the question of whether it
is necessary to allow each component of the
fluid to retain its own velocity. Generally a
multi-component, multi-velocity turbulent
mixing model should allow separate

velocities for each component of the fluid®.
However, the necessity to carry separate
velocities for each component of the fluid
greatly increases the memory requirements
and complexity of the computer
implementation. In contrast, we present a
new two-scale formulation of the K-E

turbulent mixing model, with production
terms based on a recent scaling analysis3,
which treats all components of the fluid as if
they had the same velocity. We also show
that our new method for the initial
conditions of the uncoupled two-scale K-€

model yields asymptotic growth. Future
work will compare the results of using this
single velocity model with those from a more
complete multi-velocity formulation of
turbulent mixing, to decide whether the
multi-velocity formulation needs to be used
in KULL.
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The goal of this work is to develop a turbulent mixing '_-
model for the ICF code called KULL g

e Turbulent mixing of the fluids in a multi-component system is of
interest in situations such as inertial confinement fusion (ICF) and
core-collapse supernovae’

e We report results of a project to include a model of turbulent
mixing in a multi-component hydrodynamics and physics model
called KULL, which is used for ICF

e Because KULL is a complex, multi-dimensional code, we have
developed a simplified, one-dimensional version called sKULL to
speed-up the development of the turbulent mixing model

'Remington, B.A., D. Arnett, R.P. Drake, and H. Takabe, Modeling Astrophysical
Phenomena in the Laboratory with Intense Lasers, Science 284, 1488 (1999).
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Three areas of this research are highlighted @

e sKULL reproduces KULL’s multi-component hydrodynamics and
numerics

e A single velocity, multi-component, two-scale K-E turbulent
mixing model has been developed within sKULL

e A new method for the uncoupled two-scale K-€ initial conditions
yields asymptotic growth
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We have an appropriate path to develop a turbulent !
mixing model for KULL '__L\ii

Classic KULL.:
ALE Hydrodynamics
Single sKULL:
Duplicates
KULL’s
ALE

Hydrodynamics Multi-s KULL:
The most general Multi-
model of turbulent Component
mixing is multi- and
component and
multi-velocity Multi-Velocity
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SsKULL is the right platform in which to develop a '_-
turbulent mixing model for KULL Qs'

e sKULL duplicates KULL’s hydrodynamics

m Side-by-side runs of KULL and sKULL on the Sod shock
produce the same results

m We tested the Lagrangian, Eulerian,and ALE capabilities of
sKULL to ensure they matched KULL'’s

e The simplified nature of sKULL, due both to 1-D and no addi-
tional physics, allows it to run more quickly

m Faster run times lead to shorter turn-around times for testing
turbulent mixing models
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Side-by-side runs of KULL and sKULL on the Sod

shock problem produce the same results '_:\éi

. e Duplication of KULL results on
0.8+ / selected problems w/ sKULL verifies
306_5 - that we’ve duplicated KULL’s numerics
S | e Sod (1978) shock tube problem:
> 047 — Kull_Eul
0.2+ — sKullEul
T
0.1 0 01 02 03 04 05
0.5+
N \ p
§04\ \ e Standard test problem
r303_ e Compared Lagrangian, Eulerian, and
S N
=S P ALE results to ensure that the results
§ 0.2+ from the two codes agreed
0.1 : [ [ rr [ [
0.1 0 01 02 03 04 05

8th IWPCTM 7



sKULL MC-1V’s simulation of the Benjamin air-SF, ""
shock tube agrees well with the exact solution téi

1.5

e Benjamin et al. (1993) air-SF,
shock tube:

3
il b \Result of artificial viscous stress Air | SFG

5

Pressure (Mhar)

W !
| Shock (Ma=1.2)

‘ B 10 14

Distance (cm) e Pressure results from the
MC-1V Lagrangian simulation
versus exact solution at time
232 pus show good agreement
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A multi-component, multi-velocity (MC-MV) approach '__

needs to be considered for the turbulent mixing model

e In RTI/RMI, zones may contain more than one component, each
with its own velocity

m Component interactions (e.g., drag) can lead to mixing

m From the rocket rig experiments, this led David Youngs (AWE)
to create his MC-MV mixing model?

e The MC-MV equations add a great deal of complexity

m Carrying separate velocities increases the memory
requirement

m The drag term may require an implicit treatment

2Youngs, D.L., Laser & Particle Beams 12, 725 (1994).
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sKULL will be used to test muilti-velocity versus single "f
velocity-based turbulent mixing models L‘Q‘

Because of sKULL’s simplified nature it is faster and cheaper than KULL

e The extra memory requirement of MC-MV will be manageable
e Additional computation for interactions will be do-able

e Different numerical treatments of the drag term can be tested
(explicit vs. implicit vs. iterated)

Faster and cheaper makes sKULL the ideal platform to test
whether MC-MV might be needed in KULL
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The MC-MV equations (Youngs? ) add a great deal "f

of complexity
. uALEu_I'k ,
ALE: “Grid Velocity” u = { U» Lagrangian S
0, Eulerian 977 T Shoc Hbe,
3 Interactions,
0"_); = u Turbulence Transport
o(fp.) [ 9 ou
dr | ox AR A Jx
o(fpu,) [0 U _ ;2L s
el el W RN ORI | | e AR il A I
+Z (D, + M, ) mr%
. X
d(f 0 e ) J du ou
r rr - - — —_ - — h P -
ot Jx [frprer(ur u)] S P e, ax " Ox
0 L ﬁ-erJ
+ V /€
dx frlor r ﬁx f”
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Because of the MC-MV equations’ complexity, we've '--
first developed a single velocity version, MC-1V gii

sKULL MC-1V é". =y
Lagra_ngian . Jt
equations with a
ing model, | AV < AV 1<
dt r dt | r ! Reynolds
DM_ _ﬂD_é’T-/ stress
Turbulent dissipation _l)t\dc dc
110,25 = 2408 42| [0 2
Dt dc dC 0'; dC

Kinematic viscosity/Schmidt number -/
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The use of the compressibility in the effective "'
pressure allows the simplification to single velocity _Lgi

ZBﬁK Effective pressure

P— rz : B — pr 4 qr sliigilzl:i:;)artificial
J.K
r
Inverse effective
1 dj B dzl h f rK compression;

_ Relative com-
2 l, / S]g pression
A)

4 o

For an ideal gas and q, = 0, K1 = y p, (adiabatic compres-sibility),
and h, = [f/(p, ¢ )V, f./(ps c.?)] (Youngs?)
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The viscosity for energy diffusion and Reynolds

stress comes from the two-scale K-€ model

Reynolds stress

r=5pKk, -5pv,

0x
Va =V 0 + (| . Kinematic visc.
~ N\
Molecular Turbulent
K 2
V Ta — C U <
E

a

Equations for K, and € are needed for closure
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The two-scale K-€ equations describe evolution of the "'

production and turbulence scales

%:B{*_E +£—VKJ_]<B ——T@ Production
Dt B 7" g, Ak pox scale
DKt Production 0,’ |/t d{t
— £ _gt 4+ Turbulence
Dt " o o, ok scale
De £ £ V ok
A IJB{*_Cz_L_Fi_E_E
Dt " K, K, oo, ok

2
%:C’tlfﬁ—c;zﬁ +i£§
Dt K K o ok —



The production terms Pg. for the two-scale K-€ "'

equations parameterize mixing caused by RTI or RMI

Based on a recent scaling analysis3 of RT and RM instabilities,

the production term may be written as

Rayleigh-Taylor

P, :4%7%/2@14)3/4(]%—1/4 _]q—1/4)

Richtmyer-Meshkov

B =2, (A" (R” ~ky )

3Zhou, Y., A scaling analysis of turbulent flows driven by Rayleigh-Taylor and
Richtmyer-Meshkov instabilities, Phys. Fluids 13, 538-543 (2001).

8th IWPCTM 16



Wave numbers k, and k; for the production terms '_-
evolve with the flow gii

Initially k, and k, are set by the initial perturbation scales, but thereafter
evolve according to the computed production and turbulence scales

Production scale

Rayleigh-Taylor
4 /3

4+ Cp&, (gd)""
__471_ CRTE;/Z(gA )1/4k1—3/4 + K

i - hk
Richtmyer-Meshkov 4 CiM gp AN "

ko = /2 12 ?
[2CRM (é‘pAAu k, + Kp]
Turbulence scale

k =€ C, 1K) RTormm

k, =

p -
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The change in total energy is due to production minus '--
dissipation and surface fluxes gii

= ,%’ /2+e+K)7’ = }a(P —5)1’%[0(P+r)+F+EJ o

k

Total Energy Production - Surface Fluxes
Change Dissipation
F — V & F — Va’ ﬂ<a’ Diffusive fluxes of
e L Ky internal and
O, Ok O, X |turbulent kinetic
energies

by =k, + by
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Results from Orszag and Speziale will be used to '_-
provide ICs for the two-scale turbulent mixing model ﬁ'

e Steve Orszag’s work for the ASCI Turbulence Group:

K, < ProafVo ! CusPro = |Pro) €0

2
C K

Vo

20 D 2
<& ,<P

If violated: too much
turbulence initially,
interface dies out

Initial RT or RM Production

RO

If violated: no turbulent
viscosity develops, Orszag’s
high Re run blew up

e Is this result consistent w/ Speziale’s fixed point analysis?
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The result using Orszag’s approach is consistent with '__'
Speziale’s fixed point analysis gﬂ

e The “fixed points” from Speziale’s analysis? act as attractors

¢ Initialize with fixed points that are consistent with desired long-term
behavior

¥V Leads more quickly to the desired long-term state

e Speziale’s analysis yields the following fixed points:

Ex = TptkosEr = 1€y
f, =(C,, —DIC, -1, f,=(C,, —D/C, —1)

suggesting oI
2 p0 ]; P RO
V¥ consistent with Orszag’s approach if [ <1

4Speziale, C.G., and N. Mac Giolla Mhuiris, On the prediction of equilibrium
states in homogeneous turbulence, J. Fluid Mech., 209, 591-615 (1989). ~ °""Pe™ 20



The Orszag-Speziale ICs yield asymptotically growing "f
solutions for the two-scale turbulent mixing model QQ‘

e Current recommended values C , =1.5,C_, = 2 give f = 1/2

¥V The result using Orszag’s approach is consistent with Speziale’s
fixed point analysis

V Also consistent with constraints C., > 1 and C.,>C., >1/2 needed
to get asymptotically growing solutions

e Solution of the two-scale turbulent mixing model equations as ODEs
using the Orszag-Speziale ICs produced the expected asymptotically
growing results

V The Orszag-Speziale ICs will be used in the two-scale
turbulent mixing model for sKULL MC-1V
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A test of the Orszag-Speziale ICs w/ the uncoupled =

two-scale K-E model yields asymptotic growth L_kii

Rayleigh-Taylor Test
] = gA = 4000
- = k,(0) = 10k,(0) = 20TT
mC =Cprr=1.5

"C,=15C,=20
nC,=1.08C,=1.15

e Constraints for asymptotic
growth are satisfied, and
asymptotic growth achieved

Production, K, €.
g

1 0%

Consistency with a stand-alone
ODE solution demonstrates that

the uncoupled two-scale K-E

10%2 | | | | equations have been correctly

D.oo01 0.om 0.o1 ] 0A 1 10 implemented in SKULL
Time
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Summary and Future Work

e A simplified version of the ICF code KULL has been developed which
reproduces KULL’s multi-component hydrodynamics

m The purpose of simplified KULL, sKULL, is to serve as a test-bed for
implementation of multi-component turbulent mixing models

m Tests show that sKULL faithfully duplicates KULL’s numerics

e A single velocity, multi-component, two-scale K-E turbulent mixing
model has been developed within sKULL

= A new method for the uncoupled two-scale K-E initial conditions
yields asymptotic growth

e Future work will compare these single velocity results with those from a
more complete multi-velocity formulation of turbulent mixing, to decide
whether the multi-velocity formulation needs to be used in KULL
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Table of Symbols #1

Quantity | Description
Drag force on fluid r due to fluid s

>

Specific internal energy of fluid r

Dissipation at production scale

Dissipation at turbulence scale

Volume fraction of fluid r

Acceleration (e.g., gravitational)

Relative compressibility of fluid r

Turbulence kinetic energy at production scale

Turbulence kinetic energy at turbulence scale

Mass fraction of fluid r

S| R RTS M
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Table of Symbols #2

Quantity Description
M Added mass effect br fluid r due to fluid s
S
V() Molecular viscosity of fluid r
4

=V +V Total turbulent viscosity
!

Turbulent viscosity, production scale

Turbulent viscosity, turbuence scale

=V +V Total viscosity of fluid r

Effective pressure of fluid r

P= D .|_q Effective mean pressure

— Mean pressure
p=2hp,
] Pressure of fluid r from EOS
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Table of Symbols #3

Quantity Desaiption
q= q Mean atificial viscous stress
VAir
q Artificial visoous stress of luid r
14
o= Z f 0 Mean density
rrr
Q Density of fluid r
4 Time
u Mean \elocity
- — — Vdume-weighted mean veloci
U = Zr Uy ? Y
. V. 0p, |Vdume-weighted velocity of
u, =u, + L ~ | fluid r
P, Ox
U Velocity offluid r
r
X Pcsitionat time t
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