

Simulations of a Shock-Accelerated Gas Cylinder and Comparison with Experimental Images and Velocity Fields

Cindy A. Zoldi

(Los Alamos National Laboratory and SUNY at Stony Brook)

8th IWPCTM

California Institute of Technology Pasadena, California

December 9-14, 2001

Collaborators

Experimenters:

Kathy Prestridge (LANL, DX-3)Bob Benjamin (LANL, DX-3)Paul Rightley (LANL, DX-3)Peter Vorobieff (UNM)Chris Tomkins (LANL, P-22/DX-3)Mark Marr-Lyon (LANL, DX-3)

Computational Scientists:

- <u>RAGE</u>: Mike Gittings (LANL/SAIC, X-2) Mike Steinkamp (LANL, X-3)
- <u>Cuervo</u>: Bill Rider (LANL, CCS-2) Jim Kamm (LANL, CCS-2)
- <u>CHAD</u>: Barbara Devolder (LANL, X-5) Manjit Sahota (LANL, T-3)

Thesis Advisors:

James Glimm (Stony Brook)

David Sharp (LANL, T-3)

- Purpose of research
- Experimental apparatus
- Simulation setup
- Qualitative and quantitative comparisons
- Future work

How well do computer simulations approximate nature?

What is the Richtmyer-Meshkov instability?

It occurs when a shock wave collides with an interface between two different materials causing perturbations on the interface to grow.

- Gas cylinder composed of SF₆ and surrounded by ambient air
- SF_6 seeded with glycol droplets to aid in visualizing the flow and to enable the PIV capability

Consult the following paper for more information on the experimental setup: P. M. Rightley, P. Vorobieff, and R. F. Benjamin. Evolution of a shock-accelerated thin fluid layer. *Phys. Fluids*, 9(6):1770-1782, 1997.

- 2 lasers:
 - Customized, frequency doubled Nd:YAG
 - 10 Hz 'New Wave' at 532 nm
- 3 cameras:
 - Intensified CCDs, 1134x468
 - Initial Conditions (IC), Dynamic (DYN), and PIV
- 8 pulses:
 - 7 pulses for ICs and dynamic images with $\Delta t=140\mu s$
 - 8th pulse for PIV

- Multi-dimensional Eulerian hydrodynamic code
- Directionally-split second order Godunov scheme
- Continuous adaptive mesh refinement (CAMR)
 - Each cell can be coarsened or refined by a factor of two in each timestep
 - Only one level of refinement change possible between adjacent cells
 - Refinement decisions can be modified for each material or defined for regions of computation
- Running in parallel on ASCI machines (Blue Mountain)
- Substantial validation has been performed on shocked interface problems
 - Shocked curtain, single mode RMI, NOVA experiments

RAGE was originally developed by Michael L. Gittings

Initial grid -- level 1

- Ideal gases: $\gamma_{SF6} = 1.09 \quad \gamma_{air} = 1.4$
- RAGE grid: level 1 = 0.64 cm level 7 = 0.01 cm

(approx 80 zones across the diameter of the initial cylinder)

Comparison Between Experimental and Computational Images

Quantitative Measurements

The height and width of the evolving cylinder are 15% larger in the experiment than in the simulation

Velocity Fields

Experiment

777777744444

Varying Peak SF₆ Concentration

Smaller peak SF₆ concentrations result in smaller velocities and smaller lengths

Cindy Zoldi - IWPCTM 2001

0.8

0.6

0.4-

0

200

400

Time (µs)_{3/15/02}

600

800

Varying Density Gradient at the Air/ SF₆ Interface

Experiment

Experimental Initial Conditions

Sharp Interface

Diffuse Interface

- Differences are visible in the density images with the initially diffuse interface producing the best visual agreement with the experiment
- No significant differences exist in the heights/widths and velocities

How well characterized are the experimental initial conditions?

Mesh Refinement

Experiment

Diffuse Interface - fine $\Delta x = 0.01$

Diffuse Interface - coarse $\Delta x = 0.02$

A coarser simulation shows "better" visual agreement with the experiment

Jet velocity: coarse simulation: 62 m/s fine simulation: 69 m/s

Coarser resolution:

- less rollup in vortex
- less evidence of secondary instability
- smaller jet velocity

New Velocity Measurements

The new velocity field has vectors every 187 μ m compared to every 537 μ m obtained previously.

Location of Velocity Magnitudes

Simulation

Experiment

Largest velocities occur in the back-flow area and the smallest velocities occur in the vortex core

Cindy Zoldi - IWPCTM 2001

Comparison of Experimental and Computational Velocity Magnitudes

Simulation

Experiment

The experiment and the computation have similar velocities in the vortex core

Cindy Zoldi - IWPCTM 2001

Both the experiment and the computation have a peak velocity of 15 m/s.

The magnitudes of the back-flow velocities form the tail of the histogram.

Large disagreement still exists between the experimental and computational back-flow velocities.

a

Model the evolving cylinder as a vortex pair composed of two idealized incompressible rectilinear vortices with equal and opposite circulations

For steady state flow (i.e., vortices stationary), the jet velocity U_{jet} between the two vortices is equal to*:

$$U_{jet} = 3\Gamma / 2\pi a$$

Simulation: $U_{jet} = 59 \text{ m/s}$ (predicted)Experiment: $U_{jet} = 37 \text{ m/s}$ (predicted) $U_{jet} = 69 \text{ m/s}$ (observed) $U_{jet} = 36 \text{ m/s}$ (observed)

Are the predicted velocities qualitatively consistent with the circulation and vortex spacings measured in the experiment and the simulation?

*L. Prandtl and O.G. Tietjens. Fundamentals of Hydro- and Aeromechanics, McGraw-Hill Book, 1934.

Cindy Zoldi - IWPCTM 2001

 $\leftarrow U_{jet}$

Vortex Spacing

The experiment has larger vortex spacings compared to the simulation

The experimental and computational vortex spacings are in the range of Jacobs' measurements*

<u>Note</u>: The vortex spacing is determined using flow visualization

*J. W. Jacobs. The dynamics of shock accelerated light and heavy gas cylinders. *Phys. Fluids A*, 5(9):2239, 1993.

Predictions of circulation:RS: Rudinger & Somers (1960)PB: Picone and Boris (1988)SZ: Samtaney & Zabusky (1994)

The computational circulation value right after shock passage agrees well with the theoretical predictions of PB and SZ.

We need early-time PIV to determine the corresponding experimental circulation value.

Using the PIV results at 750 μ s we find that: $\Gamma_{\text{experiment}} < \Gamma_{\text{simulation}}$

- Higher experimental velocities are observed with the improved PIV diagnostic, resulting in better agreement with the computational velocities
- The experiment and the simulation have similar velocities in the vortex core
- The computational jet velocity is approximately twice the value of the experimental jet velocity
- The differences in the jet velocities may be resolved by:
 - Examining the early-time shock-cylinder interaction in the experiment
 - Comparing the RAGE simulations with other hydrodynamics codes

- Continue to investigate the length and velocity differences between the experiment and the simulation
- Redesign the experimental hardware to allow for high-resolution PIV at early time
- Obtain a better characterization of the experimental initial conditions
- Examine the effects of mix on the cylinder development using the new mix model added to the RAGE code
- Perform simulations using different computer codes
 - Cuervo (Bill Rider, Jim Kamm)
 - CHAD (Barbara Devolder, Manjit Sahota)
- Perform statistical analysis of the experimental and computational images (Bill Rider, Jim Kamm)