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The importance of self-similar variable acceleration RT flows
(SSVARTs) for the design and calibration of turbulent mixing
models is shown in the presentation by Antoine Llor at this
workshop.

Because experimental results on SSVARTs are not, and will
probably not be available in the near future, we are currently
investigating such flows by means of LES.

In these incompressible flows the acceleration has the form

  and for self-similar mixing the mixing zone width grows in
proportion to

Preliminary results, using low-resolution LES are given for n = 0, 1
and -1, using the TURMOIL3D code.

Results are compared with simple theoretical models.
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THE TEST PROBLEM

This is based on the test problem proposed by Guy Dimonte (see presentation at this
workshop).
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The major calculational problem is the treatment of variable g within a
compressible calculation.

For incompressible flow, the pressure distribution adjusts at each instant
of time to maintain             If no mixing occurs this implies hydrostatic
equilibrium.

In the compressible simulations an appropriate pressure gradient is
maintained by adding an internal energy source.

Initially adiabatic hydrostatic equilibrium (uniform entropy/neutral stability
within each fluid) is assumed:-
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If          is the value of g for the n-th time step, at the start of the time step

      the internal energy is scaled:-

This maintains hydrostatic equilibrium outside the mixing zone and
uniform entropy within each fluid.

The acceleration history needs to be modified slightly to give finite non-
zero g at t = 0:-

case (b) g =

case (c) g =

The initial interface pressure is chosen high enough to ensure that the
Mach no. of the flow remains small (M<0.2) at all times and also high
enough to give small (<4%) variation in the initial density of each region.
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THE INITIAL PERTURBATION

RT experiments with constant g give bubble penetration

TURMOIL3D calculations with short wavelength initial perturbations (growth purely by
mode coupling) give

Need to assume long wavelength initial perturbations with amplitude
wavelength (as proposed by Inogamov [1]) to give self-similar growth with

Perturbation used

 : wavelengths
s.d             =

 : power spectrum P(k)

wavelengths in the range

h   gt      ,  with  ~ 0.05 to 0.06
1

1 2

1 2

2=
−

+
α

ρ ρ

ρ ρ
α

α ~  0.03.

∝
α ~  0.05.

( )ξ ξ ξ  =  x,y S L+

ξ S 4 x to 8 x∆ ∆
0.02 x∆

ξ L

( )σ
π

λ

ε λλ =
∞
∫ =






�












P k dk
2

 

1
2

( )⇒ ∞ P k   1 k 3

ε =  0.0005

4 x to  H
2

∆



RESULTS SHOWN

 : volume fractions of fluids 1 and 2

 : plane averaged values

W =          integral mix width

 : bubble penetration - measured to point where      = 0.99.
Approximation used here :

 =                , molecular mixing fraction

 =

S =

Fig 1 : initial long wavelength perturbation
Fig 2 : isosurfaces for the case g = k
Fig 3 : profiles of
Fig 4 : plots of
Fig 5 : plots of
Fig 6 : plots of D/P
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Figure 1

                                  = 0.005,  initial perturbation  x 200



Figure2: Isosurfaces (f1 = 0.99) for g =k

                t = 0.9                                                                                       t = 3.5













COMPARISON OF RESULTS WITH SIMPLE MODELS

(A) The Simplest Model

Bubbles of radius R have a limiting velocity                    If it is assumed that

ie           . . .(1)

Figure 5 shows plots of                   The slopes of the curves (for the range
                                   give; for

n = 0 , = 0.0464
n = 1 , = 0.0415
n = -1 , = 0.0559

The model works surprisingly well, but there is some variation of     with n:-
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(B) A Buoyancy - Drag Model

A model of this type, based on a modified form of Layzer’s equation for a
bubble rising in a cylindrical tube, was used by Hansom et al [2].

           . . . (2)

acceleration = buoyancy - drag

For constant g,                gives                  Then if    is defined as in equation
(1):-

This is closer to the TURMOIL3D results than taking    independent of n
but the change is not large enough.

Dimonte and Schneider [3] include a factor       in front of the Ag term in
equation (2).  This improves agreement with the 3D simulations.
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(C) An Energy Balance Model

This is version of the model proposed by Ramshaw [4], but with different settings for
the model coefficients.

       Let                                      = kinetic energy within the mixing layer.

 = KE production rate (loss of potential energy)

 = dissipation rate

Then the model equations used are

The coefficient     depends on the shape of the volume fraction profile.  For a linear
distribution                 For the TURMOIL3D profiles (figure 4)                    and this is the
value used here.

If for constant g we assume,                                              (figure 7) then
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The equation                gives

           . . . (3)

This has the same form as the buoyancy - drag model (2).  The coefficient
in front of the Ag term is less than unity as in Dimonte and Schneider [3].

This choice of the coefficients gives

also D/P = 0.40 assumed for n = 0
D/P = 0.36 for n = 1
D/P = 0.57 for n = -1

agrees with the 3D simulations

appears to be somewhat too high.  However, the variation of D/P
with  n (see fig. 6) is represented very well.
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FUTURE PLANS

· Values of n outside the range [-1, 1]

· Higher resolution TURMOIL3D calculations

· Use of the SSVARTs results to differentiate between various types of RANS
models.
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