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The problem of turbulent mixing under action of a constant gravity force 

(constant acceleration) on a plane interface of two gases was numerically studied 

by a number of papers [1, 2], however the studies are essentially missing for 

large density differences in mixing materials.  

This paper makes an attempt of direct 3D numerical simulation of the 

above problem with code TREK [3] for gases of different densities, such that 

n=ρ2/ρ1=3-40. With these density differences, the numerical simulations involve 

severe difficulties in achievement of the self-similar regime of a turbulent flow, 

so the difference scheme and the number of the computational cells were varied 

in the computations. A large number of the computations were conducted, it is 

impossible to demonstrate results of all the computations, however, note that the 

results agree well with each other. Below are results of computations by the same 

difference scheme and on the same computational grid. 

Numerical arrays of hydrodynamic quantities from 3D computations are 

used to find moments of the quantities (Reynolds tensor, turbulent flows, profiles 

of density and its mean square pulsation). Besides, they are also used for 

construction of one-point concentration probability density function (PDF). 

Spectral analysis of velocity and density pulsations in TMZ was conducted: the 

effect on the approximation to the Kholmogorov spectrum for the quantities was 

studied. 

The computed data is compared to known experimental data [4-9]. The 

analysis of the computed and experimental data suggests that the flow is not self-
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similar at the initial quite long stage, and the stage should be excluded to when 

determining the well-known self-similar constant α. In view of this it seems to us 

that most experimental data need to be corrected.  

 

1. Setting up TREK computations 

The problem is formulated similar to ref. [1]: at the initial time two half-

spaces separated with plane z=zc=0 are filled with ideal gases in rest having 

densities ρ1=1 и ρ2=n (n=3, 10, 20, 40). The initial geometry is presented in 

Fig.1. The gravitational acceleration, gz = -1 ≡ - g, is directed from the heavy 

material to the light. At the initial time, at the interface (in a layer one cell thick), 

a random-number generator gives random density perturbations δρ= ± ρ1δ,     

where δ= 0.1. 

Gas dynamics equations for ideal two-component medium (with zero 

molecular viscosity and heat conduction) are solved. The computational domain 

is a parallelepiped with height Λ=2. Its horizontal face is a square with side 

Lx=Ly =1. 

 
                                               Fig.1. Initial geometry 

The initial pressure profile was given using the hydrostatic equilibrium 

condition . Here the coordinate of the upper face is 

z
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2=0.85, that of the lower face z1= -1.15,  р0=100. Note that the pressure (p ≈ р0) 
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is such, that the following non-compressibility condition was met well for the 

turbulent flow  k=ξLtg<<γp/ρ, where ξ=const<<1, Lt<Λ,  Lt is turbulent mixing 

zone (TMZ) width, k is turbulent energy.  

The equation of state is ideal gas with adiabatic constant γ=1.4. The 

computational grid is uniform, having Nx=200, Ny=200, Nz=400 cells. The “rigid 

wall” type condition was posed on all the computational domain boundaries.  

 

2. Results of 3D computations, integral characteristics 

The flow evolution observed in all the computations is similar on the 

whole to the previous computations [2] for small density differences: whirl 

enlargement with time and change over to the self-similar regime are observed. 

The latter shows up for this problem, in particular, as transition to the 

linear dependence of TMZ width function Lt(t): 

Ag
L

t
F t

L

1
≡ .       (1) 

Here the unit of measurement for time is 
g
Lt x

L ≡   and Lt(t),  

Lt≡z2-z1,        (2) 

is TMZ width along z determined by points z1,z2, at which quite small value of ε 

of a hydrodynamic quantity, for example, concentration, is achieved. Next, 

assume that с2(z1)=ε, с2(z2)=1-ε, where с2 is mass fraction of the material whose 

initial density was ρ2 = n.  

The angle of inclination, dF/dt, therewith determines the value of 

coefficient αa=(dF/dt)2 in the relation for the TMZ width at the self-similar stage: 
2

ata AgtL α= .       (3) 

Fig. 2 plots F(t) from the computations using relations (1) and (2).  

For n=8.5-29,  the αa obtained in the experiments [7] range from 0.15 to 

0.2 and slightly increase with increasing n. The relevant straight lines also appear 

in Fig.2. 

  



 4

As seen from Fig.2, there are two flow segments differing in the angle of 

inclination dF/dt, at the initial segment this is larger than in the experiment, at the 

second segment this is, on the contrary, less. Prior to us, similar results were 

obtained by Youngs [1]. A comprehensive analysis of the flow suggests that at 

the first segment there is no flow self-similarity, although the inclination dF/dt is 

close to сonstant. The self-similarity takes place only at the second stage, 

therefore it is this segment that the self-similar constant α should be measured at, 

where it proves less than the known experimental data. We assume, that it is 

caused by that at processing the specified data was not excluded initial nonself-

similar a stage. 

What this can result in can be seen from the experimental data of 

Kucherenko et al., which we analyzed.  

Fig.3 plots function F2(t) Ag
zz

t
c

L

−
≡ 21  versus time for coordinate z2 of 

the penetration of the heavy liquid into the light. At the final stage, where the 

self-similar regime is achieved, our computation for n=40 results in the angle of 

inclination dF2/dt close to the observed: Fig.3 presents minimum and maximum 

quantities measured in [9] for n=36.5. Note that by α2=0.078 (α2=(dF2/dt)2) taken 

in [9] the angle of inclination is larger than the observed. Apparently, this value 

was obtained without exclusion of the initial segment, at which the self-similarity 

also does not take place. 

A similar dependence for smaller density differences is shown in Fig.4. 

Apparently, the self-similar regime is not achieved in the experiment (for 

n=3.65): the angle of inclination decreases about in the same manner as in our 

computation (for n=3) at the initial stage, where the self-similar regime is not 

also achieved. In [9] α2=0.078, this is significantly higher than the observed and 

corresponds just to the initial (non-self-similar) stage. 

Fig.5 plots the scaled TMZ width: 

2
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that follows from our computations. Here to corresponds to the intersection of the 

extrapolated self-similar segment of curve F(t) estimated by the data of Fig. 2 

with the abscissa axis. 

In the computations with n=10, 20, 40, α approaches approximately 

constant values (which corresponds to the self-similar stage): αa≈0.11, 0.15, 0.16, 

respectively, which is somewhat less than the experimental quantities [8]. Note 

that the self-similar stage is achieved earlier with increasing n, but its duration 

becomes shorter.  

Processing similar to (4) was performed for coordinates z1,z2 of the 

penetration of the heavy liquid into the light and the light into the heavy, 

respectively. Their scaled values are 

 2
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The results are plotted in Fig.6. On the whole, )t(1α , )t(2α  behave like 

. In so doing, as might be expected, TMZ grows faster toward the light 

material. Asymmetry increases with increasing n and reaches ≈2 for n=40. 

)(tα

For this problem the self-similar regime also shows up by the fact that the 

following quantity becomes time-independent: 

gL
k

tE
t

m≡)( ,        (6) 

where km(t) ≡ max(<k>(z,t)) is maximum averaged turbulent energy over the 

TMZ width:  

2
)(

)(
22 〉〈−〉〈

= jj uu
zk ,      (7) 

the averaging (denoted with <>) is over the entire horizontal section z=const. 

As seen from Fig.7, at the initial stage E(t) is large enough [at this stage, 

there is a small number of computational cells per TMZ, which leads to 

insufficiently correct values of Е(t)] and increases with increasing n in all the 

computations. At a later stage this quantity approaches approximately constant 

Е=Еа in the computations with n=3, n=10, and n=20. The Еа also increases with 

increasing n.  
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To draw a more justified conclusion about whether or not the self-similar 

regime is achieved, other turbulent quantities have to be considered. 

The TMZ maximum value, Rm, of density pulsation function R versus 

time is plotted in Fig.7, 

)Rmax(R m ≡ ,         
2

2R
′< ρ >

≡
ρ

.     (8)  

From the figure it is clear that at the self-similar stage the Rm quite 

confidently approaches approximately constant Rm≈Ra in all the computations. 

The Ra increases with increasing n. 

Fig.9 plots the TMZ maximum turbulent mass flow versus time: 

>′′≡<≡≡ zz
t

z
zzzm uR

gL
RRRR ρ,~),~max(      (9) 

Like for the Rm, from Fig.9 it follows that at the self-similar stage the  

approaches approximately constant ≈  increasing with increasing n.  

zmR

zmR zmaR

Thus, the analysis shows that at the initial flow stage the self-similar 

regime is not established and this segment should be excluded when considering 

self-similar flow characteristics. This is also true for the experiments, in which 

initial perturbations able to affect the flows under study for long are always 

present.   

  

3. Velocity and density pulsation spectra 

The computed data was used as a basis to study the velocity pulsation 

spectrum according to relation 

, , , , , ,
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Here averaging 
y,x,l

〈〉  is performed in the s-layer (over z) in a square with 

side l (l=rh, h is computational cell size), whose center coordinates are x,y, and 

then averaging ( 〈〉 ) is made over all possible values x, y of the squares with the l 

in the entire s-th layer. In (10) there is no summation over i. 
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Next:           (11) 

Fig. 10 plots the results of the computation for t=2, n=40 (where K=2π/l) along 

with Kolmogorov spectrum  

∑
=

=

=
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iill EE

lgEl= -2K/3+const.      (12) 

Inside the TMZ (
t

c

L
zz;4.03.0 −

≡ζ÷≤ζ

iilE

, here Lt was computed by 

model [2]), the computed spectrum of total energy El approaches the 3D 

Kolmogorov spectrum, with this being less confidently for highest n. Fig. 10 also 

shows that at small space scales (large K) the velocity pulsations become 

isotropic: all components  approach each other. 

A similar quantity is calculated for the squared density pulsations: 
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this is depicted in Fig. 11. As seen, at the TMZ center the spectrum of net ρl at 

small scales approaches the Kolmogorov spectrum. In contrast to the velocity 

pulsation spectrum, the density pulsation spectrum is closer to the Kolmogorov 

spectrum with increasing n. 

 

4. Concentration probability density function 

The one-point heavy material mass concentration probability density 

function was determined by the computed data: 

cN
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here  is the quantity of points in a given horizontal plane z, at 

which current concentration  is higher than с

)c)z(c(N 2
)ik(

2 ≥

)(
2
ikc 2, No(z) is the total number of 

the points in the plane. The с2 runs through a sequence of M numbers:  

cMc ∆−= )1....,,2,1,0(2 , 

where ; in our computations, М=100. 1cM =∆
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When the initial concentration array is used, because of circuit features of 

calculation of concentration in separately taken cell the maximal values F(c2) are 

achieved basically (inside TMZ) near to borders of an interval of values of 

concentration, that is, at c2≈0 or ≈1. Thus inside an interval 0 < c < 1 values F(c2) 

are small, that is, the integral is gathered basically at edges of an interval. Near to 

border TMZ, adjoining to heavy substance, F(c2) looks like δ-function 

concentrated at c2≈1. 

However, with use of averaging of an initial concentration array on 

squares with the side no, in calculation for variant N=1.6107, n=10 with increase 

no from 2 up to 4 it is observed (as shows rice 12) fast approach to certain 

established kind F(c2), not dependent from no. Its characteristic feature is almost 

uniform distribution on c2 inside TMZ, that is, F(c2) ≈1 - and the integral is 

gathered almost uniformly on all interval. 

The form of the function is similar for other n. 
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Fig. 2. Function F of TMZ width L versus t; 

our computations: 1 – n=3, 2 – n=10, 3 – n=20, 4 – n=40, 3 – by α taken in [7] 
 

  



 10

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  t

F2

1
2
3

 
Fig. 3. Function F2 of coordinate z2 of heavy liquid penetration into light liquid versus 

time t: 1 – our computation for n=40, 2 –minimum and maximum values 
measured in ref. [9] for n=36.5, 3 – by α2=0.078 taken in [9] 
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Fig. 4. Function F2 of coordinate z2 of heavy liquid penetration into light liquid versus 

time t: 1 – our computation for n=3, 2 – minimum and maximum values 
measured in ref. [9] for n=3.65, 3 – by α2=0.078 taken in [9] 
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Fig. 5. Scaled TMZ width versus time. The notations are like those in Fig.2 
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Fig. 6. Scaled TMZ boundary coordinate in light material (α1) and heavy material (α2) 
versus time. The notations are like those in Fig.2 

  



 12

 

1 2 3 4 5

0.05

0.1

0.15

0.2

0.25

0.3

t

E

1
2
3
4

 
Fig. 7. TMZ maximum scaled turbulent energy versus time. 

The notations are like those in Fig.2 
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Fig. 8. TMZ maximum density pulsation function versus time. 

 The notations are like those in Fig.2 
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Fig. 9. TMZ maximum turbulent mass flow versus time. The notations are like those in 

Fig.2 
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Fig. 10. Velocity pulsation spectrum,  

(a) n=3, t =3.5, ζ=-0.076,  (b) n=10, t =2.5, ζ=-0.076,  (c) n=20, t =2.5, ζ =0.055, 
 (d) n=40, t =2, ζ= - 0.36;        1 – El, 3 - Exxl, 4 - Ezzl, 5 - Eyyl; 2 – Kolmogorov 
spectrum. 
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Fig. 11. Density pulsation spectrum,  
(a) n=3, t =4.5,  ζ= 0.137, (b)  n=10, t =2.5, ζ=0.236, (c) n=20, t =2.5, ζ=0.22, 

 (d) n=40, t =1.8, ζ=0.19;   1 – ρl, 2 - Kolmogorov spectrum. 
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Fig. 12. Heavy material mass concentration probability density function, n=10, t=2; 
М=100. 1 – no=1, 2 – no=2, 3 – no=3, 4 – no=4;  а) ζ= -0.187, b) ζ=0.41089. 
 

  


