An Efficient and High Resolution Solver for the Two-Dimensional Numerical Simulation of the Richtmyer-Meshkov Instability

University of Wisconsin - Madison, Fusion Technology Institute
S.P. Wang, M.H. Anderson, J.G. Oakley and R. Bonazza

Key features of the Solver
The solver based on the model developed byWang et al. (2001), which uses a thermodynamically consistent fully conservative approach for the treatment of contact discontinutities based upon the
concept of Total Enthalpy Conservation of the Mixture (ThCM), is implemented to study the Richtmyer-Meshkov instability. This method utilizes a high resolution Godunov-type scheme based upon a fast exact Riemann solver and the Piece-wise Spline Method (PSM) for data construction of primitive variables at cell interfaces with fourth order accuracy ThCM Model
In the two-dimensional simulation of the Richtmyer-Meshkov instability, the hyperbolic conservation laws with the ThCM model are given by;
where \mathbf{U} are the conservative variables and \mathbf{F} and \mathbf{G} are the conservative fluxes in the x and y directions respectively.

Simulations of the Wisconsin RM Shock Tube Experiments
Driven cross section of shock tube

A series of two Richtmyer-Messhkov instabiinty experiments were conducted numerical model. In these experiments, the distance from the interface to the center of the test section was 0.457 m and an initial condition was created by the retraction of a sinusoidal copper plate which resulted in a Rayleigh-Taylor
instability. The RT formed initial condition just prior $(<10 \mathrm{~ms})$ before the shock interaction was recorded, and a sine series representation of the initial condition was used as the input initial condition for the simulation. The parameters of each of the experiments and the details of the calculations are presented below.

$t=0.17 \mathrm{~ms}$

Numerical Domain 2480x200 cells with a spatial resolution of 0.381 mm CPU time ~ 24 h on a 1.13 GHz
Pentium 4 The growth rate from the simulatio
at the time of the experiment is $9.4 \mathrm{~m} / \mathrm{s}$.

$H=\chi p+\frac{1}{2} \rho\left(u^{2}+v^{2}\right)$
In the model, the pressure is calculated following the current value of the conservative variable term ($H-p$) as follows:
$p=\frac{(H-p)-\frac{1}{2} \rho\left(u^{2}+\nu^{2}\right)}{z}$
Where χ is introduced in the ThCM model to simplify the expression of the governing equations and is defined as:
$x=\frac{\gamma}{\gamma-1}=\alpha_{1} \chi_{1}+\alpha_{2} \chi_{2}$

A splitting scheme is employed for the system in two spatial dimensions defined as follows:

The tangential velocity component, $v(u)$ in the x-sweep $(y$-sweep), is passively advected with the normal velocity component, $u(v)$. Atwo-step process shown is used to accomplish the integration from time n to $n+1$ using a Godunov scheme:

The PSM and following slope limiters, similar to those developed by Ren et al. (1996), are used for the data reconstruction of the conservative variables for the local Riemann problem solutions at cell interface

Simulation of Test Problem \#1

$\mathrm{AB}=38 \mathrm{~cm}, \mathrm{BC}=3.2 \mathrm{~cm}, 0 \mathrm{D}=20 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}, \mathrm{FG}=0.8 \mathrm{~cm}$. Initially the average position of the interface is $\mathrm{x}=0$ (point 0) Regions 1a,b contain Air (a - shocked air, b - unshocked air), region 2 contain He. The incident shock moves from
left to right, i.e. From Air to He. The full width of the tube is 12 cm and the full perturbation amplitude is 2.4 cm .

