Modeling Turbulent Mixing in Inertial Confinement Fusion Implosions

Y. Srebro, D. Kushnir, Y. Elbaz and D. Shvarts

Nuclear Research Center - Negev, Israel. Ben-Gurion University, Beer-Sheva, Israel. Hebrew University, Jerusalem, Israel.

Experiments

Perturbation dominated by power imbalance ($\ell \approx 6$)

Bubble and spike growth

Neutron yield

- 2D yield lower by factor 2-3 from 1D.
- Fully developed turbulent mixing: Worst case - fusion only in clean zone defined by most penetrating spike.

Neutron yield degradation

- 2D simulations underestimate degradation.
- Assuming fusion only in clean area overestimates degradation.

Cumulative fusion rate $(N(R) = \int_{0}^{R} n(r)d^{3}r)$ (shot 20690 - p=15atm)

2) Slight redefinition of R_{clean} will significantly change yield.
3) Contribution of bubbles to fusion yield.

Difference in yield from central region

2D central density is higher due to differences in shock dynamics.

Redefinition of clean region

Expected turbulent mixing

Redefinition of R_{clean}

Sharp rise ends at f=0.2, coinciding with clean region boundaries.

Re-definition of clean region improves agreement with experimental results

Conclusions

- Recent ICF experiments have been analyzed by comparing full 2D and 1D numerical simulations.
- Assuming no mixing, bubbles raise fusion yield above experimental results.
- Differences in central pressure, density and fusion rate at high perturbation amplitudes imply that mix effects are not limited to the mix region, hence full 2D simulations are needed.
- Regions slightly beyond R_{clean} contribute significantly to fusion yield. New definition for R_{clean} improves agreement with experimental results.