NNS

Double Cylinder Experiment ICs

Sharp

Double Cylinder Experiments
The behavior of the cylinders shows considerable variation with spacing with a spacing of 1.5 D being a critical value in the behavior.

Double Cylinder Simulations

The simulations do not show the experimental variability

Discontinuous Galerkin Resultss

New Time Limiter Results

Numerical Method

Solves conservation equations

$$
U_{t}+F(U)_{x}+G(U)_{y}=0
$$

for the variables $U=|\rho, \rho u, \rho v, \rho E|_{T}^{T}$ and flux $F(U)=\rho u, \rho u^{2}, \rho u v, u(\rho E+p){ }^{T}$ with $p=p(\rho, e), E=e+\left(u^{2}+v^{2}\right) 2$
Eq'ns are cast in "primitive" form for parts of the numerics and analysis:

$$
V_{t}+A V_{x}+B V_{y}=0
$$

$A \equiv \partial F \quad \partial V \quad B \equiv \partial G / \partial V \quad V \equiv \rho, u, v, p, \rho e]^{T}$
1 Compute "limited" spatial gradients

$$
V^{n}(x)=\bar{V}^{n}+\nabla V^{n}(\vec{x}-x)
$$

2 Advance data in time $V^{n+1 / 2}(x)=V^{n}(x)+\Delta t V_{t}$
3 Solve the Riemann problem Rarfacion \uparrow

$$
F(U)=R\left(U_{-}, U_{+}\right)
$$

4 Advance conservation laws

$$
\bar{U}_{j}^{n+1}=\bar{U}_{j}^{n}+\Delta t\left(F_{j+1 / 2}^{n+1 / 2}-F_{j-1 / 2}^{n+1 / 2}\right) \Delta x
$$

5 Update constitutive laws $p^{n+1}=p\left(\rho^{n+1}, e^{n+1}\right)$

New Time Limiterr

- 2nd Order Adams-Bashforth

$$
\left.\begin{array}{rl}
\frac{\partial V}{\partial t} & =\frac{V^{n}-V^{n-1}}{\Delta t} \rightarrow V^{n+1 / 2}=V^{n}+\frac{\Delta t}{2} \partial V \\
\text { Stiff ODE integrators control order }
\end{array}\right\}
$$

- Use standard scheme to limit
$\frac{\partial V}{\partial t}:=\varphi \frac{\partial V}{\partial t}$ and $\nabla V:=\varphi \nabla V$, with

$$
\varphi=\max \left[0, \min \left(1, \frac{2 \partial V / \partial t}{-A \nabla V}, \frac{-2 A \nabla V}{\partial V / \partial t}\right)\right]
$$

