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Summary: We are continuing to explore hydro
instability issues on NIF targets, and verifying
modeling with Omega experiments

Specifications are being completed for a variety of indirect drive targets:
Beryllium, polyimide, CH(Ge) ablators
Drive temperatures 250 - 350 eV, spectra for gold or cocktail hohlraum
Scales from 100 kJ to 600 kJ into capsule (NIF energy ~1.8 MJ)

Details such as 3He buildup in the core are being analyzed

Modeling of Omega planar polyimide Rayleigh-Taylor foils is close to
experiments

A new design for convergent Rayleigh-Taylor experiments on Omega will
test other aspects of the modeling
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Generically the ignition targets all look the same as
for the last 10 years or so
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Our current instability modeling is based entirely on
explicit full simulations of perturbation growth and
its impact on ignition and burn

•Single shell cryogenic capsules are ablatively stabilized on
outside during acceleration, and on inside during
deceleration
•Simulations indicate that modes beyond about 120 do have
any appreciable amplitudes at any times of interest
•Experiments have generally been compatible with
simulations giving us confidence in them
•Modeling is done in 2D (LASNEX and Hydra) and 3D
(HYDRA) for single modes, and for multiple modes over
various solid angles
•Biggest uncertainties are considered to be in the input:
spectrum of drive radiation, opacities, characterization of
initial perturbations
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There are three failure modes we see in our
simulations

•Acceleration: Modes l ~100 grow and disrupt the shell
Especially a problem if shell is too thin

•Deceleration: Modes l ~15 create spikes that cool the hotspot
Especially a problem if shell is too thick

•Low modes: If there is much solid angle with ρρρρr < 1 g/cm2,
bubbles blow out and yield is reduced

A successful target is optimized to trade off the first two
issues, and has enough 1D ρρρρr to minimize the third. Requires
power and energy to have room to trade them off!
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This plot summarizes ablator-seeded Rayleigh-
Taylor results for the different capsules
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600 kJ capsules might be constrained in foot length,
at a significant energy price

Largest scale might have foot increased in order
to keep total pulse length close to 20 ns
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1H,
0.3 mg/cc DT + 1H
0.5 mg/cc DT + 1H

3He:
0.3 mg/cc DT + 3He
0.5 mg/cc DT + 3He

2D simulations (ablator
roughness for 50% yield,
normalized to 65 nm,
include 0.93 µm DT rms)

Surface roughness specifications are tighter if there
is 1H or 3He in the central gas

•Both are “dead weight” w/ respect to hydro, ignition & burn
•Atom-for-atom, 3He is worse—more electrons and ion
charge, increases radiative and conductive losses
•But gram-for-gram, 1H is slightly worse—3x more atoms/g
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The calculated NIF cocktail spectrum is
intermediate between Planckian and gold

Time (ns)
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A (black) typical gold spectrum

B (red) cocktail calculation (Pollaine)

C (blue) Planckian w/ same flux

Need to do simulations
of effect on Rayleigh-
Taylor of actual
cocktail spectrum
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With a Planckian drive, baseline polyimide NIF
capsule shows 85% more Rayleigh-Taylor growth

Complicated interplay of growth on the various interfaces
With doped ablators, may be able to reoptimize w/ cocktail wall

Growth in 2D simulations, very small multi-mode pert on ablator initially
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We are doing Rayleigh-Taylor experiments on
Omega to verify modeling of polyimide

Omega hohlraum

Backlighter for face-on
Rayleigh-Taylor growth
measurement

Backlighter for side-on
trajectory
measurement

Rippled
Polyimide
foil

View for
Face-on
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Peter Amendt has done hohlraum simulations that
fit the Dante flux measurement

Post-process to simulate
Dante: almost high enough
to fit data (black curve
compared to green).

Simulated drive for package
is red curve, about 10 eV
lower

There’s a significant
geometrical correction
(like the old albedo
correction, but now in the
other direction) that we
need to incorporate
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flux onto foil
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Simulated drive extracted from Peter’s hohlraum
calculations makes sideons very close to data
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I have finished one case faceon and sideon from
June 00 shots with the new source info

Source was Dante-25eV, with M-band adjusted (by factor of several) to
match Dante M-band fraction
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This is late and slow, meaning
we’ve overcorrected the drive,
which is very good news
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The simulations I’ve shown previously for the June
00 faceons used this drive profile

Dante:
Black 19010, 1, 3 (Feb 00)
(sideons we’ve been trying to fit)

Red 20154 5 6 (June 00)
(faceon shots)

All Dante retimed to go through
(1.2 ns ,120 eV)

All plots are with CEA calibration

Profile I used for old face-on work
19010 simulated source from
Peter (aruguably fits sideons)

Black solid to black dashed is
geometry correction + ~10 eV that
Dante is still high compared to
simulations. (Arguably fits sideons)
Same correction to red curves
would be “right” profile, compare
to green curve.

Red dash is face-on Dante -25eV,
shifted 0.1ns to get good time 0 --
best guess at drive for faceons
20154-6. On old green profile, foot
was too high, peak not bad
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With that profile I had a decent fit, need to revisit
now that sideons are more or less sorted out

_ Better simulations use opacity tables generated from OPAL code
_ Increases growth slightly, improves agreement at 30 microns

Simulations using XSN opacities, Dante drive, calculated spectrum (same as above)
OPAL opacities, drive shown above and calculated spectrum
OPAL opacities, Planckian spectrum
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Recent shots in cocktail hohlraum had this drive
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At 70 micron wavelength, we see good agreement
between simulated and observed perturbation
growth
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At 70 µm wavelength there is no difference between
Au and cocktail drives in modulation growth. Early shots
seemed to show experimental difference, but not more recent
data

70 µm happens to
be the wavelength
at which
experiments have
worked to date.
Need to get data
comparing Au and
cocktails at
smaller
wavelengths!
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We are also planning convergent Rayleigh-Taylor
experiments with a mock fuel layer

•On NIF capsules, perturbation ends up growing on
interface between ablator and fuel, which becomes
increasingly unstable as shells implode

•Converging geometry is a big part of the physics
determining densities, plus something we haven’t done
enough with yet

CH

Be stays at density > CH
Doped with silver for diagnosis Similar to experiment calculated

by Dittrich for 0.6-scale NIF
noncryo

Impose
perturbations,
view face-on

Image here may give “side-on”
growth measurement

Image here will give “face-on”
ρρρρr growth measurement
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With a beryllium mock fuel layer we do a decent job
of mocking up the interface instability
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We are working on optimizing this experiment

Current thinking: ramp pulse that pushered single shell program
developed, they are verifying symmetry

Capsule 210 µm outer radius,
23 µm CH / 4µm Be+0.5% Ag / 3 µm mandrel

Gives good density profiles, and good images

Simulated image from 1 µm initial
amp, 50 µm initial wavelength, 2 1/2
waves at waist cut into ablator


